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A B S T R A C T

The distance between where food is produced and consumed is increasing, and is often taken as evidence

of an unsustainable global food system. Seafood is a highly traded commodity yet seafood sustainability

assessments do not typically consider the impacts of the movement of products beyond the fishery or

farm. Here we use life cycle assessment to examine the carbon footprint of the production and

distribution of select seafood products that are consumed in Australia and determine differences in the

sustainability of imports and their domestically produced counterparts. We found that the distance food

is transported is not the main determinant of food sustainability. Despite the increased distance between

production and consumption, carbon footprints of meals from imported seafood are similar to meals

consisting of domestically produced seafood, and sometimes lower, depending on the seafood

consumed. In combining LCA with existing seafood sustainability criteria the trade-offs between

sustainability targets become more apparent. Carbon ‘footprinting’ is one metric that can be

incorporated in assessments of sustainability, thereby demonstrating a broader perspective of the

environmental cost of food production and consumption.

� 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Global food trade is increasing at a faster rate than food
production (Ercsey-Ravasz et al., 2012) and population growth
(FAOSTAT/Tradestat, 2009) and the distances between production
and consumption are rapidly increasing (Thomas et al., 2014;
Watson et al., 2015). Global supply chains place great demands on
ecosystems and natural resources (Tilman and Clark, 2014; Wible
et al., 2014) and localised food systems have been promoted within
academic literature, public policy and alternative food movements
as a more sustainable option (Hendrickson et al., 2002; La Trobe
and Acott, 2000; Lang and Heasman, 2009; Legislative Assembly of
Ontario, 2013). Trends in trade of fish and fishery products run
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counter to aspirations of localised production as they are some of
the most-traded food commodities worldwide (FAO, 2014), with
the world’s major importers, the United States of America (USA)
and Japan dependent on imports for about 60% and 54%,
respectively, of their seafood consumption (FAO, 2012).

Compared to agriculture, fisheries are poorly represented in
food policy (Lang and Heasman, 2009) and sustainable seafood
policies are being developed in isolation from other food policy.
Conventionally, seafood sustainability has tended to be focused on
issues concerning the harvesting of fish as a natural resource
(Olson et al., 2014) and as a result, management of sustainability
within capture fisheries is concerned with ecological issues such as
overfishing, stock biomass and recruitment, and in some more
complex management regimes, ecosystem impacts and bycatch
through an ecosystem-based fishery management (EBFM) ap-
proach (Hilborn et al., 2015; Zhou et al., 2010). Similarly,
management of sustainability in aquaculture systems is largely
concerned with production issues including impacts of invasive
species on local biodiversity (Silva et al., 2009), disease control
(Bondad-Reantaso et al., 2005), impacts of chemical use on
environmental and human health (Burridge et al., 2010), eutro-
phication of natural waterways, sensitive land conversion, and the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsci.2015.06.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsci.2015.06.007&domain=pdf
http://dx.doi.org/10.1016/j.envsci.2015.06.007
mailto:Anna.Farmery@utas.edu.au
mailto:Caleb.Gardner@utas.edu.au
mailto:Bridget.Green@utas.edu.au
mailto:Sarah.Jennings@utas.edu.au
mailto:R.A.Watson@utas.edu.au
http://www.sciencedirect.com/science/journal/14629011
www.elsevier.com/locate/envsci
http://dx.doi.org/10.1016/j.envsci.2015.06.007


A.K. Farmery et al. / Environmental Science & Policy 54 (2015) 35–4336
use of wild fish in feed (Cao et al., 2015; Diana, 2009; Naylor et al.,
2000). Consideration of the broader supply chain impacts of
seafood supply is relatively recent (Avadı́ and Fréon, 2013;
Henriksson et al., 2012; Parker, 2012).

Rising greenhouse-gas emissions are affecting food production
from the land and sea (Campbell, 2014; IPCC, 2014) and the supply
of seafood contributes to these rising emissions (Tyedmers et al.,
2005). Achieving a more holistic determination of seafood
sustainability requires consideration of emissions generated along
seafood supply chains, such as product carbon footprints, as well as
traditional measures of sustainability at capture or culture.
Australia provides an interesting case study for examining
different sustainability measures, and the compatibilities or
trade-offs that emerge between them. Australia has been ranked
in the top five countries for fisheries management (Pitcher et al.,
2009) and the majority of commercial fish stocks in Australia have
been assessed as sustainable (Woodhams et al., 2013). However,
nearly 72% of the seafood consumed in Australia is imported
(Ruello, 2011) and growth in consumption of imports is expected
to continue into the future, in line with government food
frameworks (DAFF, 2013) and to meet consumer demand for
low-cost seafood products (Department of Agriculture, 2013).

This paper quantifies an aspect of sustainability that is not
typically assessed in the production and distribution of select
seafood products available in Australia, the carbon footprint (CF).
We use life cycle assessment (LCA) to compare the CF of three
domestic wild-capture products with imports that are readily
substituted by consumers. We identify patterns in the emissions of
different species, production methods and supply chain stages, and
examine these results in the context of existing seafood
sustainability assessments. We also identify the trade-offs and
opportunities in combining LCA with existing seafood sustainabil-
ity criteria and discuss the need for broader assessments to
operationalise holistic, system-wide concepts of food sustainabili-
ty and inform emerging food policy, in particular in terms of
reducing carbon emissions.

2. Methods

2.1. Australian seafood imports

Australia’s seafood imports consist mainly of lower-value
products such as frozen fillets, frozen prawns (where ‘prawns’
refers to both shrimp and prawn within Caridea and Dendrobran-
chiata) and canned fish (Department of Agriculture, 2013). Frozen
and thawed catfish (Pangasius) fillets from farms in Vietnam are
now the most commonly eaten import (Ruello, 2011). A small
amount of high value products such as lobster and abalone are also
imported. The four most important sources of seafood imports to
Australia are Thailand, New Zealand, Vietnam and China (Ruello,
2011), however, prawn, fish and lobster imports are sourced from
around 100 different countries (ABARES, 2012).

Most seafood imported into Australia is sent by ship with
approximately 10% sent by airfreight. Almost all annual imports of
prepared or preserved prawns are sent by sea (ABARES, 2012). In
contrast, some products such as fresh or chilled fish fillets
(Australian Customs Service statistical code 304100042) are
mostly airfreighted. The majority of lobster imported into Australia
is frozen and transported by sea. Small volumes of fresh lobsters
are flown to Australia from South East Asia and New Zealand, some
of which are re-imports which have been caught in Australia and
sent overseas for processing.

Data purchased from ABS was used to calculate volume, country
of origin and transport mode for several product categories of
imported prawn, fish and lobster over the past 10 years (www.abs.
gov.au). While no data was available for some product groups, 82%
of imports were included in this study.

2.2. Life cycle assessment

LCA is an integrated tool for quantifying and comparing
potential environmental impacts throughout the life cycle of a
product or products. The methods used in LCA are standardised
through the International Organization for Standardization (ISO,
2006). In this study we compare results from LCAs on four select
Australian fisheries: Tasmanian southern rock lobster (Jasus

edwardsii), white banana prawn (Fenneropenaeus merguiensis)
from the Northern Prawn Fishery, Australian salmon (Arripis

trutta) fished in Tasmania and flathead (Neoplatycephalus richard-

soni) from the Commonwealth Trawl Fishery (CTS), with products
included on the Australian Bureau of Statistics (ABS) list of imports,
documented in six peer-reviewed LCAs, one conference paper and
two PhD theses (see supplementary material Tables S1.1, S1.4 and
S1.5). These studies cover three of the five most consumed seafood
groups in Australia, including prawns, fish consumed crumbed/
battered – which is predominantly imported catfish (Ruello, 2011)
– and Atlantic salmon (Danenberg et al., 2012), as well as a luxury
seafood and several less popular fish species.

The LCA was modelled using SimaPro Software version
7.1.6. with the impact assessment method CML-IA baseline,
developed by the Center of Environmental Science (CML) of
Leiden University (Universiteit Leiden, 2015). All studies included
use the same data libraries and LCA impact assessment method as
recommended by (Baumann and Tillman, 2004). To ensure
maximum comparability between studies we focused on one
impact category (Henriksson et al., 2015), the global warming
potential (GWP), based on the characterisation model developed
by the Intergovernmental Panel on Climate Change (IPCC), where
the GWP for a time horizon of 100 years (GWP100) is expressed in
kilograms of carbon dioxide equivalent. We assume the CF to be
equivalent to GWP, where both are measured in units of CO2e. The
functional unit (FU) for all products is 1 kg of whole product.
Where transport is included, the FU is 1 kg frozen product when
transported by sea. For canned Atlantic salmon, the FU is 1 kg
whole fish and the transport method is seafreight, but energy use
for the refrigerated container is not included. For wild-capture
Australian prawns the FU is whole frozen product and for southern
rock lobster the FU is live product.

All studies employed mass allocation. Published LCAs using
other allocation methods were excluded from analysis. Original
data was collected for the Australian LCAs and sourced from
Ecoinvent libraries where not otherwise available. The system
boundary for all wild-capture studies included fuel, gear and bait
up to the point of landing but excluded infrastructure. Sensitivity
analysis was performed where variation existed between studies
regarding the inclusion of refrigeration and refrigerants on boats.
Aquaculture studies included feed and energy use up to the point
of harvest, except for the salmon study which included feed only
(Pelletier and Tyedmers, 2007). For transport of imports by boat to
Australia we included fuel use for the journey and the refrigerated
container for frozen products. Harbour activities have not been
included. For airfreight we model fuel use for the journey.

Sensitivity analysis is also performed on the aspects considered
to have the greatest impact on overall results: feed conversion ratio
(FCR) and catch per unit effort (CPUE). For aquaculture species we
model the effect of lowering or raising the FCR on the CF, assuming
other factors remain the same including feed composition, and
energy use and emissions associated with feed production. For
wild-capture species we model the impact on results of changes in
fuel use over time as a result of changing CPUE. We make the
following assumptions: (1) that the catch rate scales effort and
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Fig. 1. Carbon footprint of 1 kg whole seafood with supply chain stages*: (a) whole

frozen prawn with refrigerated seafreight to Australia; (b) whole frozen lobster: H

americanus with sea- and airfreight to Sydney, and live J. edwardsii; (c) whole

Atlantic salmon with canning and transport – frozen salmon includes refrigerated

transport, fresh salmon does not include refrigeration. *See Fig. 2 for sensitivity of

results by species.
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therefore fuel use; (2) that all emissions are perfectly variable with
catch rates and there are no fixed emissions, i.e. the fleet will
rescale with catch rate, for example, if catch rate doubles then fuel
emissions halve, because trips, bait, and gear required halve; (3)
that the fleet is homogenous so when the fleet rescales with catch
rate an average vessel enters or leaves the fishery and the
composition of the fleet, in terms of efficiency of individual vessels,
stays the same.

3. Results

3.1. Carbon footprint of seafood in Australia

The capture or farm stage was typically the major source of
carbon emissions for frozen seafood transported by sea. Carbon
emissions from seafreight were less than 1 kg CO2e kg�1 seafood
(Fig. 1). For prawns, these emissions accounted for 4% of the CF
for transport from China and the Philippines to Australia
(Fig. 1a). Trap-caught Homarus americanus landed in the USA
and shipped to Australia had a smaller CF at wholesale in Sydney
than did the Australian southern rock lobster both at landing in
Tasmania and at wholesale in Sydney (Fig. 1b). It is notable that
the CF increased by over 400% or 18 kg CO2e kg�1 when H.

americanus was flown (Boston–Los Angeles–Sydney, main flight
path), instead of shipped (Boston–Middle East–Sydney, main sea
route) to Australia from the USA. Only small amounts of lobster
are currently flown to Australia from the USA, all of which are
frozen.

Emissions from seafreight accounted for less than 10% of total
emissions for catfish from Vietnam, canned salmon from the USA,
and hake from Spain, while they accounted for over 60% for
sardines from Portugal (Table 1). For fish species with low
emissions at the production stage, a modest increase in total
carbon emissions from seafreight resulted in substantial percent-
age increases in the CF. The addition of seafreight to 1 kg of
sardines from Portugal, for example, resulted in a 157% increase of
the CF despite only increasing emissions per kilogram sardine by
approximately half a kilogram CO2e.

Transport of frozen salmon from the USA to Australia resulted in
emissions of 0.7 kg CO2e kg�1, which accounted for 25% of the CF
(Fig. 1c). The transport stage of canned salmon, which does not
require refrigeration, accounted for 0.3 kg CO2e kg�1, while the
canning process was responsible for 6.6 kg CO2e kg�1 or 73% of
carbon emissions (Fig. 1c). The farming of salmon accounted for
32% of the CF for canned salmon and 82% for frozen salmon. For
airfreighted salmon from the USA, carbon emissions increased by
18 kg CO2e kg�1 relative to seafreight (Fig. 1c). Airfreight
accounted for 57% of the CF for catfish from Vietnam and 1 kg
of airfreighted catfish had a CF 12 kg CO2e larger than if sent by sea.
Seafreight of catfish, in contrast, accounted for only 2% of carbon
emissions and resulted in 0.2 kg CO2e kg�1 (Table 1).

3.2. Comparison of carbon footprint at landing or harvest by species

Carbon emissions varied between different species of fished
and farmed seafood. Wild-caught Penaeus esculentus, an endemic
Australian prawn, had the highest CF of all the seafood examined
in this study (see supplementary material for full list of
species), accounting for 32 kg CO2e kg�1 (Farmery et al., 2015)
(Fig. 2a). Farmed P. monodon prawns had lower emissions at
5.1 kg CO2e kg�1 (Baruthio et al., 2008), similar to that of farmed
Litopenaeus vannamei, 3.1 kg CO2e kg�1 (Cao et al., 2011). Emis-
sions related to wild-caught banana prawns (F. merguiensis) were
similar to that of farmed prawn species, at 4.2 kg CO2e kg�1

(Farmery et al., 2015). J. edwardsii lobsters from Australia, had
higher carbon emissions, 12.3 kg CO2e kg�1 (Farmery et al., 2014),
than H. americanus, 4.4 kg CO2e kg�1 (average of USA and Canada)
(Boyd, 2008; Driscoll, 2008) (Fig. 2b).

Catfish (Pangasianodon hypophthalmus) had the highest CF of all
fish species at 9 kg CO2e kg�1 (Bosma et al., 2011) (Fig. 2c). Hake
(Merluccius merluccius) had a lower footprint than catfish,
5.3 kg CO2e kg�1 (Iribarren et al., 2010) but a higher footprint
than frozen salmon (Salmo salar) and flathead (N. richardsoni)
which both had emissions around 3 kg CO2e kg�1 (Farmery et al.,
2015; Pelletier and Tyedmers, 2007). Horse mackerel (Trachurus

trachurus) had emissions of 2.4 kg CO2e kg�1 (Iribarren et al., 2010)
while sardines (Sardina pilchardus) and Australian salmon (A.

trutta) had a CF of 1 kg CO2e kg�1 or less (Almeida et al., 2014;
Farmery, 2015; Vazquez-Rowe et al., 2014), the smallest of all
seafood examined (see Section 3.3 for sensitivity of results).



Table 1
Carbon emissions for different fish products at production, processing and transport.f

Fish Origin Production

CO2e kg�1

Sea freight

CO2e kg�1

Air freight

CO2e kg�1

Canning

CO2e kg�1

Total

CO2e kg�1

Production %

total

Transport %

total

Canning %

total

Catfish (Pangasianodon hypophthalmus)a Vietnam 8.9 0.2 9.1 98 2

Catfish

(P. hypophthalmus)a

Vietnam 8.9 7.7 17 54 46

Hake (Merluccius merluccius)b Spain 4.8 0.53 5.3 90 10

Flathead (Neoplatycephalus richardsoni)c Australia 2.4 2.4 100

Frozen salmon (Salmo salar)d USA 2.1 0.7 2.8 75 25

Canned salmon (S. salar)d USA 2.1 0.3 6.6 9 24 3 73

Fresh salmon (S. salar)d USA 2.1 18.3 20 10 90

Horse mackerel (Trachurus trachurus)b Spain 1.85 0.53 2.6 72 28

Australian Salmon (Arripis trutta)c Australia 0.97 1 100

Sardine (Sardina pilchardus)b Spain 0.74 0.53 1.3 58 42

Sardine (S. pilchardus)e Portugal 0.36 0.56 0.9 38.9 61

a Bosma et al. (2011).
b Iribarren et al. (2010).
c Farmery (2015).
d Pelletier and Tyedmers (2007).
e Almeida et al. (2014).
f Sensitivity of results by species presented in Fig. 2.
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3.3. Comparison of carbon footprint at landing and harvest by

production method

Three different types of prawn aquaculture had lower CF
than the Australian trawl caught prawns: polyculture (Baruthio
et al., 2008), intensive, and semi-intensive (Cao et al., 2011)
(Fig. 3a). Emissions from the two prawn trawl fisheries were
averaged at 18 kg CO2e kg�1 (Farmery et al., 2015), however, the CF
of trawling for banana prawns was similar to that of aquaculture
prawns. All lobsters were trap caught therefore no comparison
between methods was made.

There was substantial variation between fishing methods for
finfish reported in the literature, although studies on different
methods were not available for all species. Flathead caught by otter
trawl in Australia had a footprint more than double those caught
by Danish seine, 3.5 kg CO2e kg�1 compared with 1.3 kg CO2e kg�1

(Farmery, 2015). The CF of pond aquaculture catfish (Bosma et al.,
2011) was larger than net pen aquaculture salmon (Pelletier and
Tyedmers, 2007). Marine aquaculture and passive gear, such as
purse and Danish seine, had the lowest CF for gear and production
types (Fig. 3b).

3.4. Sensitivity analysis

3.4.1. Feed conversion ratio (FCR)

Results for farmed L. vannamei varied from 2.75 to
6.3 kg CO2e kg�1 (Fig. 2a) based on the FCR range for semi-
intensive and intensive aquaculture presented by Cao et al.
(2011). The CF range for Penaeus monodon varied from 4.34 to
5.88 kg CO2e kg�1 based on �15% to account for potential changes in
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fuel use for collecting snails for feed (Baruthio et al., 2008) (see
Table S1.7). The ranges presented remain comparable to wild-capture
F. merguiensis and substantially lower than P. esculentus. The standard
deviation of FCR for P. hypophthalmus (Bosma et al., 2011) was used to
determine a range of carbon emissions. When ranges are considered
for all fish species, the production of P. hypophthalmus remains the
most carbon intensive per kilogram. Pelletier et al. (2009) provide a
FCR range for salmon which we use to calculate the CF range of 1.78–
2.42 kg CO2e kg�1 for Salmo salmar.

3.4.2. Catch per unit effort (CPUE)

CPUE for tiger prawns at the time of the study was 0.15 t/day,
which was also the mean CPUE from 2004 to 2013. Results indicate
that when CPUE is higher than 0.15, P. esculentus remains more
carbon intensive per kilogram than other prawn species. CPUE for
F. merguiensis, 1.96 t/day, was higher than the mean for 2004–2013
of 1.5. The CF of 4.2 kg CO2e kg�1 used here is therefore slightly
lower than the average for the past decade although the CF for F.

merguiensis remained similar to that of aquaculture prawns.
The CPUE for J. edwardsii is at an 11-year low and the CF

presented here is higher than it may have been in previous years.
The CF of J. edwardsii with high CPUE remains larger than H.

americanus, however, the footprints are more comparable when
CPUE for H. americanus is low (Fig. 2b).

When the CF range was examined for all fish species, M.

merluccius, N. richardsoni, T. trachurus and S. salmar were more
carbon intensive per kilogram than small pelagics and less than
Pangasius. CPUE for T. trachurus varied from 0.2 to 7.8 t/fishing trip
between 1995 and 2012 resulting in a large range in the CF of
1.85 kg CO2e kg�1 presented here.
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3.4.3. System boundaries

The CF varied between 3.8–5 CO2e kg�1 for wild-caught banana
prawn and 29–39 CO2e kg�1 for wild-caught tiger prawn depend-
ing on the assumptions made about the inclusion of refrigerants
and fuel use for freezing (Table S1.9). The range of results averaged
across the two wild-capture fisheries was 16–22 CO2e kg�1. The
inclusion of on-farm activities for net-pen salmon resulted in a 6%
increase in carbon emissions and the CF at production rose by
1.3 kg CO2e kg�1 (Table S1.10), which was higher than the range
presented in Fig. 2c.

4. Discussion

4.1. Carbon footprint of seafood

Our results show that seafood imported into Australia does not
necessarily have a higher carbon footprint (CF) than domestically
produced seafood, despite the increased distance between
production and consumption. It reiterates previous research that
food miles, or distance travelled, are not the most accurate
measure of impact (Coley et al., 2013; Edwards-Jones et al., 2008;
Garside et al., 2008; Hogan and Thorpe, 2009; Weber and
Matthews, 2008; Wynen and Vanzetti, 2008) and that production
and transportation mode are more important considerations than
distance (Avetisyan et al., 2014). Imported products can have
comparable or in some cases smaller CF than domestic products.
Seafood produced on the other side of the globe, frozen and
shipped, may be the most energy efficient (Tlusty and Lagueux,
2009), an important consideration for sustainable food policy.

For example, we found that the CF of USA lobster (H.

americanus) on arrival in Sydney was lower than that of the
locally produced Tasmanian southern rock lobster (at landing and
after airfreight to wholesale) despite travelling approximately
29,000 km from East coast of the USA by refrigerated container. In
contrast, New Zealand is a major supplier of fresh fish to Australia,
and although the two countries are neighbours, much of this food
is airfreighted and therefore has a higher footprint than some
frozen and processed fish transported from further away by sea.

This concept can be explored through the example of carbon
emissions associated with plates of seafood consumed in Australia,
consisting of 150 g of fish, prawn and lobster meat (Fig. 4). The
footprint of a plate of 150 g of Australian banana prawns, southern
Fig. 4. Carbon footprints of plates made up of 150 g edible 
rock lobster and Australian salmon (50 g each of edible meat) is
1.5–2.5 kg CO2e. The footprint of a similar plate of imported
seafood including 150 g of white-leg shrimp, catfish and American
lobster is comparable at 1.5–2 kg CO2e. In another example, the CF
of a plate made up of Australian wild-capture tiger prawns,
southern rock lobster and flathead is between 4 and 6 kg CO2e,
while the CF of a plate made up of imported tiger prawns, American
lobster and sardines is only 1 kg CO2e. The seafood plates compared
in these examples are not perfect substitutes, and a comprehensive
comparison should account for other sustainability issues, cost,
consumer preference, and include other popular species eaten in
Australia as well as variations in CF over time. These examples are
used here to demonstrate that for consumers and policymakers
concerned about carbon footprints of food, imported seafood can be
competitive with domestically produced goods.

Local food production is associated with many positive values
(Schnell, 2013), however, the use of food miles as a sustainability
metric ignores other supply chain stages and environmental
considerations, potentially overshadowing more relevant indica-
tors that are important for balanced debate on food sustainability
(Avetisyan et al., 2014). Our finding that the production stage
(capture or culture), not transport, is typically the major
contributor to the CF of seafood products is consistent with the
LCA literature (Cao et al., 2011; Hospido and Tyedmers, 2005;
Pelletier and Tyedmers, 2010; Thrane, 2006; Vázquez-Rowe et al.,
2013; Ziegler and Valentinsson, 2008). For wild-capture fisheries,
the size of the CF is a reflection of the fuel efficiency of fishing boats,
which is determined by the species targeted and the type of gear
used (Schau et al., 2009; Tyedmers, 2001; Tyedmers and Parker,
2012) as well as fisher behaviour and management regime
(Farmery et al., 2014; Vázquez-Rowe and Tyedmers, 2013).
Management in particular can influence biomass and effort in
fisheries which can in turn change fuel use (Parker et al., 2015;
Ziegler and Hornborg, 2014).

CF of aquaculture species can also vary with farming system.
Intensive aquaculture of white-leg shrimp in China, for example,
had a higher CF than semi-intensive systems due to higher on-farm
energy and feed use (Cao et al., 2011). The degree of intensification,
however, may not be as important as other factors such as system
efficiency for distinguishing the impacts of aquaculture systems
(Aubin et al., 2015). Feed use is a pivotal driver of environmental
performance (Pelletier et al., 2009) as seen through large-scale
seafood from different domestic and imported sources.
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production of tilapia and carp where efficient feeding practices
resulted in lower carbon emissions per kilogram than small-scale
farming (Mungkung et al., 2013). When production methods are
compared, the literature supports our finding that marine-based
aquaculture systems have a comparatively low CF, a function of
being less energy-intensive than land-based systems (Ayer and
Tyedmers, 2009), while pond-based aquaculture can have a higher
CF as a result of aeration required to maintain water quality
(Pelletier and Tyedmers, 2010).

Long-haul airfreighted products have higher CF than non-
airfreighted products (Andersen, 2002; Farmery et al., 2014;
Winther et al., 2009). Most seafood exported to Australia is sent by
sea (www.abs.gov.au) and airfreight is generally required for
highly perishable products, where no processing or storage
infrastructure exists. Globally, 90% of trade in fish and fishery
products consists of processed products (FAO, 2012) which negates
the need for airfreight and refrigeration, although a trade-off exists
where the processing stage contributes to the life cycle impacts of a
product. The canning process adopted from Almeida et al. (2015) in
this study was the main source of carbon emissions of canned
salmon. The footprint of canned products was greater than frozen
products predominantly due to the use of tin for the cans. Canning
also represented the largest contribution to the CF of tuna (Hospido
et al., 2006) and sardine (Vazquez-Rowe et al., 2014) supply chains.
The disposal of packaging materials used to ship frozen catfish
fillets has also been identified as an area for improvement (Nhu
Thuy et al., 2015). Processing, usually nonetheless, prolongs
product shelf-life which is an important consideration given that
food wastage from storage, handling, transport and final con-
sumption can be as high as 50% for seafood in countries in North
America and Oceania (Gustavsson et al., 2011).

Carbon emissions are not a traditional measure of seafood
sustainability yet the impacts from climate change, including
ocean acidification and rising water temperatures (IPCC, 2014),
may present a greater threat than the localised production impacts
currently informing sustainability assessments. LCA may not
capture all of the sustainability issues posed by a globalised,
highly complex food system (Garnett, 2009) or some unique
fishery impacts (Curran et al., 2010; Pelletier et al., 2007), however,
opportunity exists to combine the assessment of impacts
considered under current measures of sustainability with impacts
such as carbon emissions. This combination would provide a more
holistic understanding of seafood sustainability as well as
highlighting the compatibility or trade-offs between different
sustainability goals.

4.2. Current seafood sustainability assessment of wild-capture

seafood

Demersal trawling can be responsible for ecosystem impacts
(Lack, 2010) and some of the highest CF of all fishing methods.
Opportunity therefore exists to improve the localised ecological
impacts of trawling as well as broader environmental impacts
through improved fisheries management (Driscoll and Tyedmers,
2010; Farmery et al., 2014; Ziegler and Hornborg, 2014). Fuel use
efficiency in the Australian Northern Prawn fishery, a global model
for many aspects of fisheries management (Gillett, 2008), has been
improving (Pascoe et al., 2012) although reducing carbon
emissions has not been a management goal. Prawn trawl fisheries
in Senegal, in contrast, are potentially less well managed, given
that Senegal was ranked alongside the worst performing countries
in an assessment of compliance with the FAO Code of Conduct for
Responsible Fishing (Pitcher et al., 2008) and the CF of trawl caught
Senegalese pink shrimp, while not directly comparable to the
Australian example, was reportedly high (Ziegler et al., 2011).
Management, and its influence on carbon emissions, may be a
more important consideration for seafood sustainability than the
distance a product has travelled.

4.3. Current seafood sustainability assessment of aquaculture

While some farmed seafood can have a lower CF than wild-
capture species, there is a range of other environmental impacts
associated with aquaculture. Mangrove loss, pollution of agricul-
tural land and water, and impacts on wild fish stocks from wild
seed stock collection and feed have all been documented (see for
example Ahmed et al., 2010; Diana, 2009; Jonell and Henriksson,
2015; Naylor et al., 2000; Páez-Osuna, 2001). The use of fishmeal
has also been identifying as the overall largest single contributor to
the CF of the Asian aquaculture sector (Henriksson et al., 2014).
However, the majority of seeds are now artificially produced and
there have been recent advances in replacement of fishery
products in shrimp diets (Glencross et al., 2014).

Several third-party aquaculture assessments have emerged
such as the Global Aquaculture Alliance Best Aquaculture
Practice certification programme. However, the success of the
programme in reducing environmental impacts is unknown
(Tlusty and Tausig, 2014). Energy consumption and carbon
emissions of farms are included in the Aquaculture Stewardship
Council (ASC) standards and a Responsible Feed Standard is
currently being developed (http://asc-aqua.org). This inclusion of
the life cycle perspective demonstrates how broader environ-
mental considerations are beginning to be incorporated into
seafood sustainability.

Whether seafood products are produced near or far from where
they are consumed should not be the main consideration for
assessment of their relative sustainability (Tlusty and Lagueux,
2009). Instead there needs to be a focus on the whole system –
covering production, distribution and consumption. Policy deci-
sions designed to negate the environmental costs of food
production through reduced meat consumption, while nourishing
a burgeoning populace (Eshel et al., 2014; Garnett, 2009), may
unintentionally lead to the greater promotion of seafood to meet
recommended protein intakes. Policy makers will need to examine
existing sustainability criteria, as well as broader impacts
associated with species type, production method and distribution
mode, when considering seafood and sustainability within food
policy.
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