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Abstract

Aim: Protected areas have become pivotal to the modern conservation planning toolbox, but a

limited understanding of marine macroecology is hampering their efficient design and implementa-

tion in pelagic environments. We explored the respective contributions of environmental factors

and human impacts in capturing the distribution of an assemblage of commercially valuable, large-

bodied, open-water predators (tunas, marlins and mackerels).

Location: Western Australia.

Time period: 1997–2006.

Major taxa studied: Pelagic fishes.

Methods: We compiled 10 years of commercial fishing records from the Sea Around Us Project

and derived relative abundance indices from standardized catch rates while accounting for con-

founding effects of effort, year and gear type. We used these indices to map pelagic hotspots over

a 0.58-resolution grid and built random forests to estimate the importance of 33 geophysical,

oceanographic and anthropogenic predictors in explaining their locations. We additionally exam-

ined the spatial congruence between these hotspots and an extensive network of marine reserves

and determined whether patterns of co-occurrence deviated from random expectations using null

model simulations.

Results: First, we identified several pelagic hotspots off the coast of Western Australia. Second,

geomorphometrics explained up to 50% of the variance in relative abundance of pelagic fishes,

and submarine canyon presence ranked as the most influential variable in the North bioregion.

Seafloor complexity, geodiversity, salinity, temperature variability, primary production, ocean

energy, current regimes and human impacts were also identified as important predictors. Third,

spatial overlap between hotspots and marine reserves was limited, with most high-abundance

areas primarily found in zones where anthropogenic activities are subject to few regulations.

Main conclusions: This study reveals geomorphometrics as valuable indicators of the distribution

of mobile fish species and highlights the relevance of harnessing static topography as a key ele-

ment in any blueprint for ocean zoning and spatial management.

K E YWORD S

catch rate standardization, fisheries data, geomorphometrics, hotspot, marine reserves, pelagic

fishes, random forest, spatial modelling, submarine canyons, topography

Global Ecol Biogeogr. 2017;1–14. wileyonlinelibrary.com/journal/geb VC 2017 JohnWiley & Sons Ltd | 1

Received: 27 June 2016 | Revised: 5 June 2017 | Accepted: 22 June 2017

DOI: 10.1111/geb.12619

http://orcid.org/0000-0002-2144-2049


1 | INTRODUCTION

The past decades have seen unprecedented changes in the abundance

of marine living resources. Despite divergent perspectives on the pres-

ent status and future prospects of the world’s fisheries (Daan, Gislason,

Pope, & Rice, 2011; Froese, Zeller, Kleisner, & Pauly, 2012), overexploi-

tation since the 1950s is widely accepted as a catalyst of modern

declines in elasmobranchs (sharks, skates and rays) and teleosts globally

(Letessier, Bouchet, & Meeuwig, 2017). Although efforts to rebuild

fisheries are now underway in several ecosystems (Worm et al., 2009),

their success to date remains relatively modest because insufficient

control on current exploitation rates often precludes recovery, even for

resilient stocks that may have adapted to moderate levels of extractive

pressure (Neubauer, Jensen, Hutchings, & Baum, 2013).

In this context, a new generation of multilateral environmental

treaties has emerged to reverse the large-scale erosion of biodiversity.

The United Nations Convention on Biological Diversity (CBD;

http://www.cbd.int/) is perhaps one of the best-known examples and

presently binds 196 countries to take legislative and policy action to

tackle the loss of threatened species. A key element of the conven-

tion’s strategic plan is Aichi Target 11, which commits to expand the

coverage of marine reserves (MRs) to at least 10% of the world’s ocean

by 2020. Although the ecological and socio-economic merits of MRs

are well established in coastal systems (e.g., Angulo-Vald�es & Hatcher,

2010; Kerwath, Winker, G€otz, & Attwood, 2013), their utility in pelagic

environments remains more contentious, in part owing to the percep-

tion that mobile species require protection over too large a geographi-

cal space to be logistically, politically or financially practical to

implement or enforce (Kaplan, Chassot, Gruss, & Fonteneau, 2010).

However, such assumptions rarely account for heterogeneous popula-

tion structuring (Grewe et al., 2015), partial migration, residency, site

fidelity, philopatry (Chapman, Feldheim, Papastamatiou, & Hueter,

2015), evolutionary reductions in mobility (Mee, Otto, & Pauly, 2017)

and predictable aggregative behaviour in upper-trophic-level organisms

(e.g., Kessel et al., 2014). There is now growing consensus that even

mobile predators with extensive home ranges, such as seabirds (Young,

Maxwell, Conners, & Shaffer, 2015), cetaceans (Gormley et al., 2012),

turtles (Scott et al., 2012), fishes (Kerwath et al., 2009) and sharks

(White et al., 2017), can benefit from spatial closures (Breen, Posen, &

Righton, 2015), provided mortality rates do not rise disproportionately

in adjacent unprotected waters as a result of effort displacement

(Powers & Abeare, 2009). This is especially true where reserves strate-

gically encompass core habitat areas or sites in which key life-cycle

events perennially occur (Hooker, Hyrenbach, Corrigan, Polovina, &

Reeves, 2011).

Sparse ecological data in remote offshore waters [i.e., beyond the

territorial sea baseline, both within exclusive economic zones (EEZs)

and beyond; Webb, Vanden Berghe, & O’Dor, 2010] make the direct

identification of critical habitat difficult and call for robust surrogates of

biological diversity to predict, delineate and prioritize candidate sites

for zoning (McArthur et al., 2010). Complex topography has been rec-

ognized as a determinant of wildlife dynamics across numerous taxa

(Bouchet, Meeuwig, Salgado Kent, Letessier, & Jenner, 2015), which

suggests that locating protected areas over sites of rugged terrain

could yield a range of conservation gains (Harris & Whiteway, 2009;

Michael, Jahncke, & Hyrenbach, 2014). Morato et al. (2008), Morato,

Hoyle, Allain, and Nicol (2010) and Worm, Lotze, and Myers (2003)

illustrated this possibility in the open ocean by showing that North

Atlantic and Pacific seamounts were important centres of taxonomic

richness of special interest for the management of threatened verte-

brates. Nevertheless, whether static topography could be widely used

as a key element in ocean planning remains to be investigated in other

ocean basins and for different types of geomorphologies. Submarine

canyons, for instance, are prominent and commonly occurring physical

seabed features throughout the world’s oceans. Although their role as

drivers of primary productivity, plankton abundance and benthic bio-

mass is well documented (Fernandez-Arcaya et al., 2017), our under-

standing of their importance to pelagic megafauna remains nascent and

somewhat skewed towards marine mammals (e.g., Moors-Murphy,

2014).

Here, we combine long-term landings and fishing effort datasets

from the Sea Around Us Project (http://www.seaaroundus.org) with a

recent reclassification of Australian submarine canyons (Huang, Nichol,

Harris, & Caley, 2014) to: (a) determine the location of abundance hot-

spots for a suite of commercially important predatory pelagic fishes

within the western part of Australia’s exclusive economic zone (here-

after ‘wEEZ’); (b) examine associations between these hotspots and an

array of abiotic variables, including seabed topography, on a continental

scale; and (c) assess their spatial congruence with a subset of Australia’s

3.1 million km2 national network of Commonwealth Marine Reserves

(http://www.environment.gov.au/topics/marine/marine-reserves).

2 | MATERIALS AND METHODS

2.1 | Fish and environmental data

Annual commercial fishing records for the wEEZ were extracted from

the quality-checked databases compiled by Sea Around Us but did not

include the recent catch reconstructions that capture estimates of rec-

reational and illegal fishing (Pauly & Zeller, 2016). These data are global,

readily accessible (http://www.seaaroundus.org/data/), transparent,

vetted through extensive peer review and were adopted as the only

spatially resolved dataset available that currently allowed analyses at

macroecological scales. Landings (in tonnes) originated primarily from

yearly catch reports (corrected for discarded bycatch) produced by the

Food and Agriculture Organization (FAO) (Watson, Alder, Kitchingman,

& Pauly, 2005; see Supporting Information Appendix S1). Effort statis-

tics were obtained from an array of public domain sources (Watson

et al., 2013) and standardized to a common unit of vessel engine power

and operation time (kilowatt sea days; kwsd), following Anticamara,

Watson, Gelchu, and Pauly (2011). Both catch and effort were disag-

gregated into a grid of 0.58 (latitude) 3 0.58 (longitude) spatial cells

using a rule-based algorithm, a technical description of which is pro-

vided elsewhere (Watson, Kitchingman, Gelchu, & Pauly, 2004; Watson

et al., 2013). The full dataset used here spanned the period 1950–
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2006 and comprised 5,640,222 entries of 111 species and higher taxa,

representing a total catch of 3.11 million tonnes extracted over

3.35 million km2 of the eastern Indian Ocean between 93 and 1298 E

and 8 and 398 S.

We also collated a biophysical dataset composed of 51 variables

computed over the same 0.58 cells as the fisheries data (Table 1, Sup-

porting Information Appendix S3, Table S1, and Supporting Information

Appendix S2, Figure S1). Most of these variables were geomorphomet-

rics (measures of seabed complexity, n520) assembled from existing

archives curated by Geoscience Australia, including a newly revised dig-

ital catalogue of submarine canyons (Huang et al., 2014). Recognizing

that mesoscale hydrographic features attract mobile megafauna (Scales

et al., 2014) and that human activities can affect spatial patterns in bio-

diversity by driving changes in species composition and abundances

(Navarro, Coll, Cardador, Fern�andez, & Bellido, 2015), the dataset also

included a number of oceanographic factors (n514; Table 1, Support-

ing Information Appendix S3, Table S1, and Supporting Information

Appendix S4) as well as indices of cumulative anthropogenic threats

(n53; Table 1 and Supporting Information Appendix S3, Table S1).

2.2 | Data processing

Our stepwise approach to data preparation and analysis is illustrated in

Figure 1, and a brief description of each step follows below (see Sup-

porting Information Appendix S1 for full details). Analyses were carried

out in R 3.3.1 (R Foundation for Statistical Computing) and Matlab

2012a (MathWorks, Inc.).

2.2.1 | Gear matching

Catch and effort were estimated independently. Landing records were

segregated by species and fishing method and were well resolved both

spatially and temporally. In contrast, the effort data were incomplete

and reported on the basis of gear rather than taxa. To guarantee com-

patibility between the two datasets, we re-allocated every fishing gear

type to one of five discrete and mutually exclusive categories, namely

gillnet (GIL), seine (SEI), trawl (TRW), line (LIN) and miscellaneous (OTH)

(Supporting Information Appendix S2, Figure S2). We used this classifi-

cation key as a common denominator to pair all landings with a corre-

sponding value of effort for any combination of year 3 grid cell using a

purpose-built Microsoft Access 2011 (Microsoft Corporation) query.

2.2.2 | Filtering

We filtered the data to generate a time series spanning the period

1997–2006, excluding all demersal or benthopelagic species caught

and all grid cells situated outside the continental wEEZ (Supporting

Information Appendix S1 and Appendix S3, Table S2). Catch records

for unidentified species were discarded, and those reported only in

families and genera were reapportioned to confirmed species in pro-

portion to their relative contribution to the total family- or genus-

specific catch. Finally, gears contributing < 5% of total landings were

omitted, effectively removing all benthic fishing from our study area.

Clear outliers (see Supporting Information Appendix S1 for definition),

including particularly small coastal grid cells and exaggerated estimates

of effort, were also excluded (Supporting Information Appendix S3,

Table S2).

2.2.3 | Geographical partitioning

To control for spatial non-stationarity, we subdivided the consolidated

data into four contiguous bioregions: North, Gascoyne, West and

South. These reflected broadly homogeneous environmental conditions

and biological assets (Supporting Information Appendix S2, Figure S3),

consistent with management boundaries recognized by the Western

Australian Department of Fisheries (http://www.fish.wa.gov.au/).

2.2.4 | Imputation of missing effort data

Although the filtered landings achieved full temporal and spatial cover-

age, with a positive catch value for each grid cell 3 year combination,

available effort estimates were incomplete and required reconstruction

in locations where none existed (Supporting Information Appendix S2,

Figure S4). We performed gap filling on the effort matrix using the

smoothn package (https://au.mathworks.com/matlabcentral/fileex-

change/25634-fast–n-easy-smoothing) introduced by Garcia (2010),

which applies penalized regression to smooth evenly gridded data in

multidimensional space. The algorithm was executed on a 3-D space–

time cube (year 3 latitude 3 longitude) of effort values, summed

across fishing gear types owing to data scarcity in some grid cells (Sup-

porting Information Appendix S2, Figure S5). After imputation, effort

predictions were re-allocated to all gears proportionally to their original

usage rate in (a) each cell 3 year when cell-level data existed or (b) the

bioregion as a whole when cell-level data were missing.

2.2.5 | Catch rate standardization

The use of fisheries-dependent data for ecological inference hinges on

standardizing the catch per unit effort (CPUE) to control for confound-

ing elements that may affect catchability (Maunder & Punt, 2004). We

constructed lognormal generalized linear models (GLMs) to standardize

CPUE values for each bioregion (Supporting Information Appendix S2,

Figure S6) across year, fishing gear category, grid cell and species body

weight (as a proxy for size-mediated gear selectivity; Supporting Infor-

mation Appendix S1). A subset of nine plausible models was assessed

and competing formulations were ranked based on their second-order

(corrected) Akaike information criterion scores (AICc; Table 2). We

forced the inclusion of grid cell as a factor in all models, but its interac-

tion with year was not considered owing to the paucity of records on a

per year and cell basis. Following Francis (1999), the coefficients (b) of

the grid cell term were scaled to canonical form to guarantee invariance

to the choice of baseline level. Scaled values were taken as relative fish

abundance indices and calculated for grid cell i as: b0
i5

bi
�b
, where �b is

the geometric mean of all b, defined as �b5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQn

i51 bi
n

q
.

2.2.6 | Random forests

We gauged quantitative relationships between predictor variables and

abundance indices with random forests (Breiman, 2001), using the

party R package (Strobl, Hothorn, & Zeileis, 2009) to construct 2,000

unbiased conditional inference trees of fish abundance (on the log

scale) in each bioregion (Strobl, Boulesteix, Zeileis, & Hothorn, 2007).
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For comparison, we developed models from both the full environmen-

tal dataset and a reduced set comprising geomorphometrics only. We

also assessed the importance of each predictor through unconditional

permutation (Strobl, Boulesteix, Kneib, Augustin, & Zeileis, 2008) and

determined how many top-ranking variables should be designated as

truly ‘important’ by implementing a modified version of the recursive

selection protocol described by Sabatia and Burkhart (2014) (see Sup-

porting Information Appendix S1 for full details).

2.2.7 | Hotspot detection

Bartolino, Maiorano, and Colloca (2011b) proposed cumulative relative

frequency distributions (CRFDs) as a simple way of delineating spatial

hotspots in a continuous parameter of interest (e.g., density, diversity).

The method is objective and preferable to the more traditional Getis–

Ord Gi* or Moran’s I, which rely heavily on a priori user-selected set-

tings (Bartolino, Maiorano, & Colloca, 2011a). We obtained CRFD

curves by plotting the relative values of fish abundance indices in each

bioregion against their own frequency distribution. The majority of

CRFDs derived from biological data should increase monotonically and

approach an upper asymptote, such that tangents to the curve can

then be interpreted as rates of accumulation, with high-density areas

(hotspots) characterized by tangent slopes < 458. Instead of empirically

approximating tangents from pairs of adjacent points, we fitted local

polynomial regressions (LOESS smoothers, obtained from the R pack-

age fANCOVA; Wang, 2010) to the CRFDs (Supporting Information

Appendix S2, Figure S7), with smoothing span widths chosen according

TABLE 1 Summary of explanatory variables

Variable Name Unit State Ecological interpretation

Bathymetric/topographic

CI Contour index d.u. Static Vertical circulation and mixing, eddy formation, prey refugia,
prey entrapment

CRS Cross-sectional curvature rad/m Static Vertical circulation and mixing, eddy formation, prey refugia,
prey entrapment

FRD Fractal dimension d.u. Static Vertical circulation and mixing, eddy formation, prey refugia,
prey entrapment

LSRI Land surface ruggedness index d.u. Static Vertical circulation and mixing, eddy formation, prey refugia,
prey entrapment

RUG Rugosity d.u. Static Vertical circulation and mixing, eddy formation, prey refugia,
prey entrapment

Geological

CAN Presence/absence of one or more submarine
canyons

d.u. Static Breeding/spawning habitat, migration cue, prey availability

CANpercent Percentage of grid cell area occupied by
submarine canyons

% Static Breeding/spawning habitat, migration cue, prey availability

CANhead Presence/absence of one or more canyon
heads

d.u. Static Productivity (upwelling), food availability, feeding ground

CANadj Number of adjacent cells containing submar-
ine canyons

d.u. Static Population connectivity, larval dispersal

CANdepth Maximum canyon depth within a cell m Static Prey availability, breeding/spawning habitat
FEATcount Number of distinct geomorphic features

within a cell
d.u. Static Prey and habitat diversity

FEATdom Dominant geomorphic feature class d.u. Static Prey availability, breeding/spawning habitat

Oceanographic

CUREW East–west current velocity m/s Dynamic Nutrient inputs, oxygenation, enhanced productivity, larval
drift and juvenile recruitment

CURNS North–south current velocity m/s Dynamic Nutrient inputs, oxygenation, enhanced productivity, larval
drift and juvenile recruitment

FFD Daily sea surface temperature frontal fre-
quency

% Dynamic Food availability, migration cue

L2 Regional circulation regimes d.u. Dynamic Eddy formation, enhanced primary and secondary production
L3 Ocean energy d.u. Dynamic Prey availability, breeding habitat, feeding success, larval

growth rates
MIX Mixed layer depth m Dynamic Prey availability, physiological tolerance, oxygen availability
PP Annual mean primary production mg C/m2/day Dynamic Prey availability
PPstd SD of annual mean primary production mg C/m2/day Dynamic Prey availability
SAL Annual mean salinity at the surface PSU Dynamic Prey availability, physiological tolerance, hatching rate
SSTstd SD of sea surface temperature 8C Dynamic Spawning cue, breeding habitat, metabolic stress
WAT Water mass at surface d.u. Dynamic Prey availability, physiological tolerance

Anthropogenic

Hi Mean cumulative human impact d.u. Dynamic Mortality, sublethal disturbance, displacement
Hir Range of cumulative human impacts d.u. Dynamic Mortality, sublethal disturbance, displacement
Him Maximum cumulative human impact d.u. Dynamic Mortality, sublethal disturbance, displacement

Note. Only the top 15 random forest predictors from each bioregion are shown (Figure 3). See Supporting Information Appendix S3, Table S1 for the
full list and links to data sources. Geomorphometrics encompass both ‘bathymetric/topographic’ and ‘geological’ parameters. d.u.5 dimensionless unit.
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FIGURE 1 Graphical representation of the grooming and analysis of the Sea Around Us data

TABLE 2 Model selection summary from the generalized linear model standardization of pelagic fish catch rates

North Gascoyne West South

Model formulation DAICc Adjusted R2 DAICc Adjusted R2 DAICc Adjusted R2 DAICc Adjusted R2

a1Cell1Year1 log(E)1 log(A)1 E 23,976 .355 9,372.1 .204 10,611 .235 9,911 .203

a1Cell1Year1Gear1 log(E)1 log(A)1 E 10,541 .456 4,687.1 .347 6,445 .356 8,411 .256

a1Cell1Year1Gear1Weight1 log(E)1 log(A)1 E 4,928 .459 3,063.7 .347 3,997 .369 1,936.6 .384

a1Cell1Year1Gear1Weight1Dport
1 log(E)1 log(A)1 E

4,928 .459 3,063.7 .347 3,997 .369 1,936.6 .384

a1Cell1Year1Gear 3 Weight1 log(E)1 log(A)1 E 3,739 .468 2,838.1 .354 3,604.9 .380 1,249.3 .404

a1Cell1Year1Gear 3 Dport1 log(E)1 log(A)1 E 10,389 .457 3,940.2 .368 5,326 .385 8,281 .261

a1Cell1Year 3 Dport1Gear1Weight
1 log(E)1 log(A)1 E

4,478 .463 2,425.5 .365 3,613.2 .380 1,785.1 .389

a1Cell1Year 3 Gear1Weight1Dport
1 log(E)1 log(A)1 E

3,182 .472 767.8 .409 956.3 .445 988.3 .412

a1Cell1Year 3 Gear 3 Weight1 log(E)
1 log(A)1 E

0 .493 0 .428 0 .467 0 .440

Note. The best model [with minimal second-order corrected Akaike information criterion (AICc) and maximal adjusted R2] is shown in bold. DAICc quan-
tifies the difference in AICc score between the current and best models. The response variable was the log of catches (in tonnes). a is the intercept, E
is the residual variation, log(E) and log(A) are offset terms for fishing effort and water surface area respectively, and the standard notation ‘3’ repre-
sents all covariate main effects and their associated interactions. Weights are the species-specific values reported in Supporting Information, Appendix
3, Table S3.

BOUCHET ET AL. | 5



to the bias-corrected AICc. This approach is less sensitive to noise and

enables a more robust detection of fish hotspots that reflects funda-

mental ecological signals rather than data idiosyncrasies.

2.2.8 | Spatial overlap between MRs and hotspots

We matched hotspots with MRs and measured their spatial congru-

ence according to Jaccard’s similarity coefficient J (Real & Vargas,

1996). We developed null models to determine the probability of

obtaining these patterns by chance, with the null expectation that hot-

spots could occur anywhere within each bioregion. Following Leroux,

Schmiegelow, and Nagy (2007), this was achieved by randomly select-

ing without replacement the same number of grid cells as identified

hotspots, calculating J, and reiterating this permutation 10,000 times.

We then compared the simulated distribution of Jaccard indices to the

corresponding observed values via two-sample Mann–Whitney–Wil-

coxon tests. The same steps were followed to quantify overlap with

Marine National Parks (MNPs).

2.2.9 | Uncertainty propagation

Estimates of variance for relative abundance indices, predictor rankings,

hotspot thresholds and Jaccard values were acquired by applying a

non-parametric bootstrapping procedure, which resampled the CPUE

data randomly and with replacement 100 times.

3 | RESULTS

3.1 | Fish landings and abundance indices

The catch data consisted of 23 pelagic species (22 teleosts, one elas-

mobranch), of which 12 are highly migratory (Annex I of the 1982 Con-

vention on the Law of the Sea; Supporting Information Appendix S3,

Table S3). Mackerels and tunas dominated, with six species (Katsuwo-

nus pelamis, skipjack tuna; Thunnus maccoyii, southern bluefin tuna;

Thunnus albacares, yellowfin tuna; Thunnus obesus, bigeye tuna; Scom-

beromorus commerson, narrow-banded Spanish mackerel; and Trachurus

declivis, greenback horse mackerel) making up nearly 75% of all land-

ings over the 10 years of the study. Northern fisheries contributed

nearly twice as much to total catches (37%) as those operating in other

bioregions (18% Gascoyne, 23% West and 22% South).

The GLM formulation that minimized the AICc contained a three-

way interaction between year, fishing gear category and species body

weight (Table 2). Bootstrap catch rate standardization models explained

between 45 and 50% of the deviance [mean adjusted R2 and 95% per-

centile confidence interval, North: 0.5 (0.49–0.5); Gascoyne: 0.44

(0.43–0.45); West: 0.48 (0.46–0.49); South: 0.45 (0.44–0.47)]. Fish

abundance was highest in the North bioregion (spatial regional mean6

SD: 15.7654.1), followed by the South (2.664.7), Gascoyne

(1.761.4) and West (1.662.5) in that order (Supporting Information

Appendix S2, Figure S8). Model prediction uncertainty, expressed as

the coefficient of variation (CV) of bootstrap values, showed a reverse

pattern, being largest in the South (mean regional CV6 SD: 0.366

0.07), relative to the West (0.3160.05), Gascoyne (0.2760.05) and

North (0.2360.06) (Supporting Information Appendix S2, Figure S9).

3.2 | Pelagic hotspots

Numerous hotspots of fish abundance, and clusters thereof, were con-

sistently identified, with a high frequency of inclusion in bootstrap

resamples (Figure 2). These included areas adjacent to the Scott reefs

(14.18 S, 121.88 E), the edge of the Exmouth Plateau and the Argo-

Rowley terrace (178 S, 1178 E), offshore waters northwest of Barrow

Island (20.88 S, 115.48 E), the length of Ningaloo Reef peninsula

(22.58 S, 113.58 E) south to Shark Bay (268 S, 1148 E), Rottnest Island

and the Perth canyon (31.98 S, 115.18 E), Geographe Bay (33.68 S,

115.38 E) and the vicinity of Cape Leeuwin (358 S, 115.18 E), as well as

along a significant stretch of the southern coastline from the Bremer

Basin (35.58 S, 119.58 E), east to the western half of the Great

Australian Bight (328 S, 1298 E).

Random forest models built on the full set of biophysical predictors

explained between 24 and 70% of the out-of-bag variance (R2) in fish

abundance (Table 3 and Supporting Information Appendix S1). Geo-

morphometrics accounted for more than half of this percentage in all

cases, and although reduced models suffered a loss of predictive

power, performance remained satisfactory, particularly in the North (R2

> 50%). The number and order of predictors selected as important also

varied spatially (Figure 3 and Supporting Information Appendix S3,

Table S4). For example, canyon presence in neighbouring cells (CANadj)

was the top-ranked parameter in the North (bootstrap mean rank6

SD: 1.0660.28), closely followed by fractal dimension (FRD; 2.286

0.55). In contrast, the Gascoyne bioregion was clearly driven by ocean-

ography, with sea surface temperature variability (SSTstd; 1.060.0)

and annual mean primary production (PP; 2.2760.51) emerging as the

most influential pair. Likewise, the West was dominated by PP (1.796

0.89), ocean energy (L3; 2.0160.98) and regional circulation regimes

(L2; 2.4560.92), whereas in the South, L3 (1.060.0), dominant geo-

morphic features (FEATdom; 2.060.0) and east–west current velocity

(CUREW; 3.6260.59) were most important (Figure 3). Despite this

variation in importance of variables, measures of static topographic

complexity, including canyon attributes, made up an average of 34% of

the top 10 splitting variables and 43% of all predictors retained after

variable selection. Despite lower mean ranks, some metrics exhibited

particularly high selection frequencies; for instance, geodiversity

(FEATcount; 100% in the North and 75% in the West), the contour

index (CI; 91% in the West and the South) and, to a lesser extent, can-

yon orientation (CANorient; 58% in the South) or canyon distribution

(CANadj; 56% in the West). A small number of predictors, including

CANadj, SAL, PP or SSTstd, were recurrently important throughout the

entire wEEZ. In contrast, the frequency of chlorophyll peak index

(FCPI) was of relatively trivial importance, as retained in 17% of boot-

strap runs on average in only three of the four bioregions. Two human

presence indicators (Hi and Him) were especially dominant (mean rank

< 10 and frequency > 80%) in the North and the South bioregions.

3.3 | Spatial overlap

Hotspots occupied a mean area of 198,017 [95% percentile CI:

(153,398–239,884)] km2 across bioregions [n577 (60–94) cells; i.e.,
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8.4% of total] and were most abundant in the North [30% (18–40) of

the cumulative number of hotspots in the entire wEEZ] but most prev-

alent in Gascoyne [12% (7–17) of the number of grid cells in the biore-

gion]. In comparison, MR coverage was 796,110 km2 (n5316 cells)

and was more prominent in the North (32% of the cumulative number

of reserve cells in the entire wEEZ) but widest in the West (39% of the

number of grid cells in the bioregion). Congruence was highest in the

North bioregion, although Jaccard scores remained generally very low

everywhere (< 0.2), suggesting that a substantial proportion of the MR

network as a whole does not intersect hotspots (Figure 4). All Mann–

Whitney–Wilcoxon tests were significant (null permutation models,

p< .01), and hotspots coincided with reserves less frequently than

expected by chance alone in all bioregions but the North. Overlap with

MNPs was substantially lower than with the wider MRs in both the

FIGURE 2 Pelagic fish hotspots derived from the Sea Around Us data. Hotspot probability was derived as the frequency with which each

grid cell was selected as a hotspot across n5100 bootstrap iterations, with darker tones denoting higher values. Submarine canyons
(Huang et al., 2014) are overlaid in black
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Gascoyne and West bioregions. This trend was only marginally

reversed in the North and South.

4 | DISCUSSION

Our study offers quantitative insights into the occurrence patterns of

an assemblage of highly mobile, pelagic predatory fishes in the eastern

Indian Ocean. Prediction maps revealed several fish hotspots along the

northwestern, southwestern and southern continental shelves of

Western Australia, broadly consistent with findings from previous

research. For example, tuna and billfish species richness peaks in similar

parts of the North and Gascoyne bioregions (Trebilco et al., 2011), and

analyses of movement behaviour in tiger sharks (Galeocerdo cuvier;

Ferreira et al., 2015) and pygmy blue whales (Balaenoptera musculus

brevicauda; Double et al., 2014) indicate that pelagic hotspots coincide

with home range cores and areas of distinctly higher occupancy times

in both species (Supporting Information Appendix S2, Figure S11).

These congruent spatial patterns suggest a potential common basis to

hotspot formation across multiple taxa (Bouchet et al., 2015). Higher

relative abundance was also inferred at a number of discrete sites, con-

firming their importance to marine megafauna (Supporting Information

Appendix S2, Figure S8); these included the seasonally productive

Bremer basin, a foraging ground for white sharks (Carcharodon

carcharias) and killer whales (Orcinus orca), the Albany canyon group, a

FIGURE 3 Summary of predictor importance in the random forest models. Each bioregion is assigned a different colour scheme and
position on the wheel, from the outer (North) to the inner rings (South). Darker tones indicate predictors that ranked both highly and
consistently (across bootstrap resamples), according to the bivariate key. Predictors that were not retained after variable selection (see
Supporting Information Appendix S1 for details) are shown in grey. Canyon attributes are identified in black, topographic variables in dark
grey and all remaining predictors in light grey (left). A full list of variable abbreviations is provided in Supporting Information Appendix S3,
Table S1

TABLE 3 Predictive accuracy of the random forest models of pelagic fish abundance

Bioregions

Input Performance metric North Gascoyne West South

All variables RMSE 1.58 (1.54–1.61) 1.0 (0.93–1.05) 0.77 (0.73–0.83) 1.07 (1.02–1.11)

All variables R2 .70 (.69–.71) .44 (.39–.48) 0.24 (0.19–0.29) .5 (.46–.54)

Geomorphometrics RMSE 1.93 (1.9–1.96) 1.16 (1.1–1.21) 0.81 (0.76–0.87) 1.23 (1.17–1.27)

Geomorphometrics R2 .51 (.5–.52) .19 (.16–.24) .17 (.12–.23) .33 (.3–.37)

Note. Values represent bootstrap means (with associated 95% percentile confidence intervals). Performance is evaluated on the out-of-bag data (see
Supporting Information Appendix S1). R2 represents the percentage of variance explained. RMSE5 root mean squared error.
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favourable habitat for sperm whales (Physeter macrocephalus; Johnson

et al., 2016), the Recherche Archipelago, the Rowley Shoals, the

Ashmore, Scott, Cartier and Ningaloo reefs (Sleeman et al., 2007) and, to

a lesser degree, the waters off Dirk Hartog Island (Letessier et al., 2013).

Importantly, we add to a growing body of literature demonstrating

that mobile top predators congregate at discrete and perennial sites

(Graham et al., 2016). As international support for expanding the

world’s marine reserve coverage continues to rise (Singleton & Roberts,

2014), the hotspot concept may become particularly appropriate in

guiding long-term MR placement and focusing research attention and

resources on regions of persistently high ecological value for mobile

species, whilst conferring maximal conservation benefits per dollar

invested. Such information will be crucial because designing reserves is

notoriously difficult and constrained by the costs of sampling vast vol-

umes of ocean (Letessier et al., 2017) as well as by the necessity to

accommodate a broad gamut of socio-economic and geopolitical inter-

ests. Thus far, most extant pelagic MRs have been established oppor-

tunistically without reliance on well-defined scientific criteria (Roberts,

2000) and/or residually where there is little perceived conflict with

resource users (Devillers et al., 2015). In many information-poor set-

tings, such as offshore waters, surrogate-based approaches may thus

be the only viable option for improvement (McArthur et al., 2010). If

so, the main difficulty will then lie in identifying not only a universally

accepted operational definition of what constitutes a hotspot, an exer-

cise so far thwarted by mixed interpretations (Bouchet et al., 2015),

but also reliable proxies that can predict hotspot locations and possibly

their change through time. Both will require the creation of standar-

dized operating procedures that reconcile the numerous ways in which

hotspots are measured (Marchese, 2015), importance scores calculated

and predictors pruned (Szymczak et al., 2016).

Methodological biases notwithstanding, conflicting results from

empirical studies have fuelled controversy about the application of abi-

otic surrogates to conservation planning scenarios (cf. Rees, Jordan,

Price, Coleman, & Davis, 2014 with Stevens & Connolly, 2004). Such

disputes are likely to stem from unresolved questions regarding the

spatial and temporal stability of surrogate relationships or the effects

of data quality and availability on indicator performance (Mellin, 2015).

However, as efforts to test the validity of explanatory variables con-

tinue to be made, it will become easier to draw generalizations and

identify those that perform consistently better across ecosystems,

regions and scales (Sutcliffe, Klein, Pitcher, & Possingham, 2015). Geo-

morphometrics have generally remained broadly unvalidated proxies of

oceanic biodiversity (but see Morato et al., 2010; Worm et al., 2003) in

part because large portions of the seafloor are yet to be mapped and

the majority of seamounts, submarine canyons and other prominent

features around the world are still poorly explored (Huvenne & Davies,

2014). This suggests that weak correlations between static topography

and predator hotspots may, at least historically, be more likely to reflect

sporadic and uneven sampling than the absence of genuine wildlife–

habitat relationships. Syntheses are also beginning to emerge that high-

light the value of using geodiversity to prioritize areas for biological

conservation (Beier, Hunter, & Anderson, 2015). Here, we have con-

firmed the value of geomorphometry by showing that it can be a good

predictor of fish abundance on a macroecological scale and highlighting

several indices of topographic complexity that have consistent relation-

ships with pelagic biodiversity. That said, not all geomorphometrics

were equally important. For instance, reflecting the observations of

Huang et al. (2014) that the Australian margin is both physically and

morphologically heterogeneous, submarine canyon metrics were out-

performed in some bioregions but not others. We see two possible

explanations for this. First, the formation and maintenance of open-

ocean hotspots may demand a suite of interacting oceanographic and

biophysical forces that are not associated with all canyons or topo-

graphic features (e.g., upwellings, fronts, eddies, physical retention of

prey; Hazen et al., 2013). Second, some canyons may provide favour-

able conditions for pelagic fish species only episodically. If the latter is

true, the relatively coarse temporal and spatial resolution of our data

might not have been sufficient to reveal such variable relationships.

This could be the case for canyon heads, which were not retained as

important predictors of hotspots in our analysis but which are fre-

quently reported to be sustained by cyclical upwelling events (Rennie

et al., 2009). Likewise, the Oceanic Shoals Commonwealth Marine

Reserve (11.58 S, 128.58 E) was identified here as a cold spot of fish

abundance despite records of seasonally elevated pelagic diversity

(Nichol et al., 2013).

In order to fully explore the hotspot spectrum and prioritize candi-

date areas for protection more robustly, a conceptual shift is warranted

whereby hotspots are no longer defined in purely geographical terms,

but are rather mapped in the four dimensions of latitude, longitude,

time and depth, with explicit evaluations of their levels of intra/inter-

FIGURE 4 Congruence between pelagic fish hotspots and marine
reserves. Overlap is measured as the Jaccard similarity coefficient
J, which ranges from 0 (no overlap) to 1 (complete overlap). Lighter
and darker colours capture the distribution of values under random
null models (n510,000) and empirical bootstrap resamples
(n5100), respectively. Mean values are shown as filled circles, and
their associated 95% percentile confidence intervals (CIs) as

continuous lines. CMR5Commonwealth Marine Reserves (all
zones); MNP5Marine National Parks (no-take zones only)
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annual variability (Santora & Veit, 2013). Despite being essential to

long-term resource management, such evaluations of hotspot persist-

ence are seldom attempted in practice (Santora & Sydeman, 2015). A

natural way of quantifying the consistency of hotspots through time is

to determine the frequency with which a given site exceeds a chosen

hotness level. Piacenza et al. (2015) proposed a ‘universal’ threshold in

the form of a mean value across years, whereas Santora and Veit

(2013) recommended that one standard deviation above a grand

regional mean (> 1SD) be used as a common cut-off to align with pre-

vious work on remotely sensed patterns in ocean colour (Suryan,

Santora, & Sydeman, 2012) and krill and whale distributions (Santora &

Reiss, 2011). Although pragmatic, neither approach was feasible in the

present study, and future efforts should be made to characterize

hotspot variability based on finer-scale time-series data.

Assessing the processes underpinning the environmental preferen-

ces of wildlife species is a major challenge in the pelagic realm. The

trophodynamics and habitat usage of tunas, billfishes and their relatives

are complex, dynamic and niche-dependent such that species occupy-

ing temperate or tropical eco-regions may exhibit contrasting tolerance

for, and responses to, similar environmental signals (Arrizabalaga et al.,

2015). Such non-stationarity (illustrated in Supporting Information

Appendix S2, Figure S10) may be mediated, and further complicated

by, biotic interactions of varying intensity and direction across latitudes

(Schemske, Mittelbach, Cornell, Sobel, & Roy, 2009). This may explain

why temperature, kinetic energy, oxygen concentration and salinity are

often seen as important predictors of biogeographical range but a

mechanistic understanding of their influence is often missing in the lit-

erature. For example, the role of salinity, a consistently high-scoring

variable in all bioregions (Supporting Information Appendix S3, Table

S4), in determining the occurrence of pelagic species, is particularly

obscure albeit some evidence exists that haline fronts may be indirectly

linked with reproductive success (e.g., Alvarez-Berastegui et al., 2014),

or prey density and therefore favourable foraging areas (e.g., Maury,

Gascuel, Marsac, Fonteneau, & Rosa, 2001). Remotely sensed measure-

ments of ocean colour and their derivatives, such as FCPI, are more

readily interpretable, but may lack explanatory power (Supporting

Information Appendix S3, Table S4) if the target organisms sit several

trophic levels above primary producers (Gr�emillet et al., 2008), track

productivity at depth by following the deep scattering layer or chloro-

phyll maxima and/or time lags occur between chlorophyll peaks and

resource availability for consumers (Navarro et al., 2015).

Few studies have investigated the relative contribution of anthro-

pogenic factors in controlling the distribution of ocean wildlife

(Navarro, Cardador, Fern�andez, Bellido, & Coll, 2016). Distributional

shifts caused by climate change or overfishing have been documented

in some species (Fromentin, Reygondeau, Bonhommeau, & Beaugrand,

2014), but relationships with cumulative, distal factors can prove com-

plex and taxon-specific (Navarro et al., 2015). As such, disentangling

the respective effects of oceanographic conditions, migratory behav-

iour, density dependence, exploitation history and population structure

on habitat selection remains a significant challenge. Here, the preva-

lence of human impact measures (Hi and Him), especially in the north

of the wEEZ, is unsurprising because this region boasts a diverse array

of active and productive industries (e.g., petroleum, tourism, shipping,

defence) earmarked for accelerated growth in coming decades. Further

research is, however, needed to define the strength, directionality and

persistence of their impacts on individual species at both population

and organism levels. Comprehensive syntheses of contemporary pres-

sures and their trends should greatly facilitate this process.

Against a backdrop of limited global marine protection (Costello &

Ballantine, 2015) and a failure of conventional management to halt

declines in ocean health, support for the implementation of place-

based conservation strategies, such as marine reserves, is rapidly grow-

ing. In the past, MRs have largely mirrored the static frameworks that

proved successful on land, yet recognition of the more fluid and three-

dimensional nature of the pelagic realm has prompted calls for more

complex dynamic ocean management (DOM) approaches that can har-

ness near-real-time data to provide adaptive and flexible responses to

changes in the distribution and behaviour of species, habitats and

resource users alike (Maxwell et al., 2015). Although a valid and prag-

matic concept, successful examples of its execution remain few (but

see Dunn, Maxwell, Boustany, & Halpin, 2016) and restricted to devel-

oped countries with sufficient logistical capacity and financial means to

make DOM a viable option. Nonetheless, with access to technology

rapidly expanding, DOM should become increasingly feasible in the

future.

This does not imply that static reserves are ill-suited to mobile

organisms. Indeed, mounting evidence suggests that even migratory

species can benefit from static closures, for the following reasons: (a)

protecting part of an animal’s range or life cycle contributes to reducing

overall mortality; (b) pelagic species are not necessarily as far-ranging

as previously believed (White et al., 2017) and tend to aggregate

around predictable bathymetric and hydrographic features; (c) their

rates of residency, philopatry or site fidelity have generally been under-

estimated; (d) static MRs ought to be easier to enforce and therefore

more likely to bear tangible benefits in species conservation; and (e)

neglecting the potential for evolution of individual movement rates has

compromised expectations of MR effectiveness (Mee et al., 2017). In

this context, Australia recently declared a national network of MRs

that occupies more than a third of its entire jurisdiction (c. 3.1 million

km2). This areal coverage is exceptional by international standards;

however, the reserve system in its current form provides low levels of

protection equality across habitats and bathymetric classes (Barr &

Possingham, 2013). Our analysis demonstrates (despite some caveats,

see Supporting Information Appendix S1) that other natural assets,

namely hotspots of mobile predatory wildlife, are also significantly

under-represented. Whilst the declaration of the network has been a

milestone in Australia’s ecosystem-based approach to conservation,

work remains to be done to ensure that the framework in place is eco-

logically coherent and enables rapid progress towards the new target

set by the IUCN 2014 Sydney World Parks Congress to have at least

30% of ocean environments afforded strict protection within the next

15 years. Of course, marine reserves are only one conservation tool

and are not a blanket solution to the problem of declining fish
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populations and biodiversity loss (Allison, Lubchenco, & Carr, 1998).

They can, however, complement management efforts focused on set-

ting and enforcing sustainable exploitation levels, controlling illegal fish-

ing, mitigating pollution, capping fleet capacities, decreasing reliance on

destructive gear and reducing bycatch rates. We also recognize that

the mission statement of the world’s protected area portfolio has

expanded far beyond the original objectives the first reserves were cre-

ated to fulfil in the early 1900s. Today, MRs are not only promoted as

a means of preserving iconic wildlife and seascapes, but also to help

bolster national economies, increase tourism, support the livelihood of

local communities, alleviate poverty, replenish depleted stocks and pro-

vide resilience in the face of environmental change. The relevance of

MRs for pelagic species will therefore need to be balanced against

these and numerous other goals.

Here, we have provided empirical evidence that geomorphomet-

rics can be meaningful proxies of macroecological patterns in pelagic

marine species, a notion long suspected to be true but seldom compre-

hensively tested (with some exceptions; e.g., Morato et al., 2010;

Worm et al., 2003). We also reinforced the notion that landing statis-

tics can be instructive in a biogeographical context (Reygondeau et al.,

2012), provided they are handled with care, transparency and a thor-

ough understanding of their limitations in addressing specific questions.

Appropriate use of these data is crucial because they provide some of

the most spatially and temporally extensive information available for

marine organisms, making them relevant as inputs in spatial planning

within the data-limited pelagic ocean. Moreover, we demonstrate that

significant opportunities to advance existing conservation frameworks

await within offshore waters. The establishment of a global ‘hotspot

repository’ (Hazen et al., 2013), to which this study contributes, is an

essential step in developing an effective and flexible system of ocean

management.
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