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Abstract

Background: Worldwide, finfish fisheries are receiving increasing assessment and regulation, slowly leading to more
sustainable exploitation and rebuilding. In their wake, invertebrate fisheries are rapidly expanding with little scientific
scrutiny despite increasing socio-economic importance.

Methods and Findings: We provide the first global evaluation of the trends, drivers, and population and ecosystem
consequences of invertebrate fisheries based on a global catch database in combination with taxa-specific reviews. We also
develop new methodologies to quantify temporal and spatial trends in resource status and fishery development. Since
1950, global invertebrate catches have increased 6-fold with 1.5 times more countries fishing and double the taxa reported.
By 2004, 34% of invertebrate fisheries were over-exploited, collapsed, or closed. New fisheries have developed increasingly
rapidly, with a decrease of 6 years (+3 years) in time to peak from the 1950s to 1990s. Moreover, some fisheries have
expanded further and further away from their driving market, encompassing a global fishery by the 1990s. 71% of taxa (53%
of catches) are harvested with habitat-destructive gear, and many provide important ecosystem functions including habitat,
filtration, and grazing.

Conclusions: Our findings suggest that invertebrate species, which form an important component of the basis of marine
food webs, are increasingly exploited with limited stock and ecosystem-impact assessments, and enhanced management
attention is needed to avoid negative consequences for ocean ecosystems and human well-being.
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Introduction

Global finfish catches from capture fisheries peaked in the 1980s

and have declined or remained stable since the early 1990s, yet

global invertebrate catches have continued to climb [1]. Although

some invertebrate fisheries have existed for centuries [2–4], many

others have commenced or rapidly expanded over the past 2–3

decades [5,6]. Today, shrimp has the largest share of the total

value of internationally-traded fishery products (17% in 2006,

including aquaculture), followed by salmon (11%), groundfish

(10%), tuna (8%), and cephalopods (4%) [1]. In several ways,

invertebrate fisheries represent a new frontier in marine fisheries:

they provide an alternative source of animal protein for people, job

opportunities in harvesting and processing, and substantial

economic opportunities for communities due to their high value

and expanding markets [1,5,6]. Yet, while finfish fisheries [7] and

some more established invertebrate fisheries [8–11] have received

increasing assessment, regulation, and rebuilding, many inverte-

brate fisheries do not get the same level of attention or care. They

are typically not assessed, not monitored, and often unregulated

[1,2,5,6,12], which threatens their sustainable development

despite their increasing social, economic, and high ecological

importance [6,13].

The increase in invertebrate fisheries is in part a response to

declining finfish catches that caused many fishermen to switch to

new target species, often further down the food web [6,14]

although in many regions lower-trophic-level fisheries were added

without declines in higher-trophic-level fisheries [15]. At the same

time, the abundance and availability of many invertebrates may

have increased due to release from formerly abundant finfish

predators [16]. Once thought to be particularly resistant to over-

exploitation [17], an increasing number of historical [3,4] and

recent invertebrate fisheries [2,5,12] tell a different story. Thus, in

light of their increasing importance, we evaluated the current

status, as well as the spatial and temporal trends of invertebrate

fisheries around the world. Further, we aimed to assess their

underlying drivers, and population and ecosystem consequences.

Unfortunately, stock assessments and research survey data that

are available to evaluate many finfish populations [7] are often

lacking for invertebrates [6,12,13]. Therefore, we used the Sea
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Around Us Project’s catch database (Text S1) as the best available

data source to analyze temporal and spatial trends in invertebrate

fisheries on a global scale. It consists largely of a quality-checked

version of the Food and Agriculture Organization’s (FAO) catch

database supplemented by regional and reconstructed datasets

covering 302 invertebrate species or species groups (taxa) over 175

countries from 1950–2004 [18]. Wherever possible we have

corroborated the observed patterns with recent taxa-specific global

reviews (Text S1).

Results and Discussion

Since 1950, invertebrate fisheries have rapidly expanded on

multiple scales, and today operate around the world (Fig. 1A). In

2000–2004, the highest concentrations of catch per unit area by

Large Marine Ecosystem (LME) were in the Yellow Sea, East

China Sea, and the Northeast U.S. Continental Shelf, followed by

the Newfoundland-Labrador Shelf, South China Sea, and

Patagonian Shelf. The bulk of the catch in these areas consisted

of bivalves, shrimps, squids, and crabs (Table S1). Catches for all 4

of the larger invertebrate taxonomic groups (crustaceans, bivalves,

cephalopods, and echinoderms) were heavily concentrated in the

Yellow Sea and East China Sea (Fig. S1). In addition, catches for

crustaceans were highly concentrated off the Newfoundland-

Labrador Shelf, bivalves on the Northeast U.S. Continental Shelf,

cephalopods off the Patagonian Shelf, and echinoderms off the

Humboldt Current (Fig. S1). Since 1950, the total reported catch

of invertebrates has steadily increased 6-fold from 2 to 12 million t

(Fig. 1B). In comparison, the catch of invertebrates and finfish

combined increased 5-fold over the same period, beginning to

decline in the late 1980s [14,19]. The increase in invertebrate

catch is not driven by only a few countries, as the average catch

per country has more than doubled (Fig. 1B). Also, in 2004 there

were 1.5 times more countries fishing for twice as many

invertebrate taxa compared to 1950 (Fig. 1C). This is in contrast

to all finfish and invertebrate fisheries combined, where the

number of countries reporting catch has been largely stable over

the past 50 years (Fig. 1C). Although increasing trends in

invertebrate fisheries may be partly explained by increasing

precision in reporting (Fig. S2), there are clear underlying trends of

expansion by catch, country, and taxa (Figs. 1B, 1C, 2). This is

corroborated by studies on individual fisheries where assessments

or effort data are available [20,21].

The increase in invertebrate fisheries is driven not by a few

major target species, but instead by increasing catch trends across

all taxonomic groups (Fig. 2, Fig. S3). While catches have

increased continuously since the 1950s for more traditionally

fished crustaceans and bivalves, they rapidly increased in the

1980s and 1990s for often newly targeted cephalopods and

echinoderms. Thus, already existing fisheries expanded and new

fisheries were developed for species that had not been commer-

cially fished before. Although overall catch trends for invertebrate

fisheries paint a picture of continuing expansion (Fig. 1B), catches

in several groups (e.g., octopus and echinoderms) have slowed or

declined in recent years (Fig. 2B and 2D). The picture of universal

increase changes even more drastically if we look at individual

invertebrate fisheries by country. Here, some countries are still

expanding their catches while others peaked long ago (Fig. S4, see

also [5,21]).

Based on individual catch trajectories, we assessed the current

status and patterns of depletion of invertebrate fisheries. To do

this, we modified a technique of Froese and Kesner-Reyes [22] to

estimate the exploitation status of each invertebrate fishery from

catch data (Fig. S5). Our modifications overcome previous

weaknesses of this method by accounting for high variability in

catch, spurious peak catch years, and fisheries that are still

expanding (see Materials and Methods and Text S1). Our results

suggest that half of the fisheries had peaked as of 2004 (Fig. 3A),

with 18% fully exploited, 21% over-exploited or restrictively

managed, and 13% collapsed or closed with little difference across

functional groups (Fig. S6). This, combined with evidence of an

increasing number of countries reporting catch and an increasing

number of taxonomic groups targeted (Fig. 1C), indicates that the

globally increasing invertebrate catches (Fig. 1B) are likely supplied

by new taxa or new countries entering the fishery. In some

invertebrate fisheries, such as many sea cucumber fisheries [21],

decreasing catch trends have been directly related to population

declines; however, we do not suggest that catch trends are

generally good indicators of population status or have been driven

solely by high exploitation pressure. Declines in catch can also

have natural (e.g., recruitment failure due to climate) and other

human-related (e.g., changing markets, restrictive management)

drivers that can act in conjunction with each other [23].

Strong global markets may drive the expansion and serial

depletion of some fisheries over space and time [3,5,24],

particularly given the increasing availability of efficient fishing

gear, rapid global transport, and the incentive to preferentially fish

profitable marine resources [25]. If a fishery is declining in one

region, fishing companies move into other regions, usually further

away, to supply the demand of global buyers [5]. Some new

invertebrate fisheries have a single strong market, as shown for sea

urchins [5], where the global catch is related to the value of the

Japanese Yen [26]. For other taxa, single driving markets are less

obvious. For example, squid has 3 main importing nations (Japan,

Italy, and Spain), while others have even more (Text S1).

However, the vast majority of global sea cucumber catch is

exported to Hong Kong (64% by volume between 1950–2004) or

nearby Asian countries and the value of sea cucumbers has risen

dramatically in recent decades [27]. To test whether spatial

expansion has occurred, we used least-squares regression to

compare the great-circle distance from Hong Kong with the year

of peak sea cucumber catch for each country (Text S1) and found

a significantly positive relationship (r = 0.62, p = 0.002, Fig. 3B).

Given the generally poor stock status of sea cucumber fisheries

[27], this may indicate a strong driving market where fisheries are

sequentially exploited in relation to transportation distance. Such

serial exploitation can have strong negative social and ecosystem

consequences [5].

If markets and prices increase, new fisheries may develop more

rapidly over time. To test this, we compared the time when

invertebrate fisheries began or expanded with the time when they

reached an initial peak in catch (see Materials and Methods and Text

S1). We used an initial rather than overall peak in catch

trajectories to treat new and old fisheries equally. Despite

uncertainty within the results for individual taxa, we found a

significant overall reduction in time to peak for newer fisheries

(Fig. 3C). This corresponds to an approximate decrease of 6 years

(+3 years, 95% confidence interval) in time to peak when

comparing the 1950s to the 1990s. We suggest this may be a result

of better fishing technology combined with growing demand due

to the increasing global human population, changes in diet

preferences (e.g., the rise of sushi restaurants in Western countries),

declines in finfish fisheries, as well as more and more smaller

fisheries being exploited, facilitated by global transport. We note

that a pattern of serial depletion and substitution of other species

within each investigated taxonomic group could mask peaks in

catch [21] causing us to underestimate the rapid development of

fisheries. Where a peak in catch represents a peak in fishery

Global Invertebrate Fisheries
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productivity, it is unlikely that management and research can keep

up with this rate of expansion to ensure sustainable development

[5,6].

The rapid expansion, and in some cases serial depletion, of

global invertebrate fisheries may have strong ecosystem conse-

quences due to the method of fishing and the functional roles

invertebrates play in marine ecosystems. In 2000–2004, 53% of

invertebrate catch by volume and 71% by taxa fished were caught

by benthic trawling and dredging gear with these proportions

remaining relatively stable since the 1950s (Fig. 4A, B). This is

largely driven by benthic trawling for crustacean and cephalopod

species and dredging for bivalves. In comparison, benthic trawling

and dredging accounted for only 20% of global finfish catch (57%

of taxa, 2000–2004 mean). Such gear has substantive negative

impacts on most benthic habitats and communities by destroying

three-dimensional structure, impacting spawning and nursery

Figure 1. Spatial and temporal trends in catch, species diversity and countries involved in global invertebrate fisheries. (A) Mean
annual invertebrate catch in each Large Marine Ecosystem (LME) from 2000–2004. (B) Trends in invertebrate catch globally (red) and per country
(mean and standard error assuming a log-normal distribution, blue). Trends in all finfish and invertebrate catch (total catch, dashed red) are included
as a reference. (C) Trends in the number of countries reporting catch of invertebrates (solid red) and of all finfish and invertebrate species (total,
dashed red, as a reference) since the 1950s, and number of invertebrate taxa (taxonomic groups or species) fished by country (mean and standard
error assuming a negative binomial distribution, blue). Thickness of dark blue line approximates false increase due to increased reporting precision
(Text S1).
doi:10.1371/journal.pone.0014735.g001
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grounds, altering benthic community composition, and reducing

future biomass, production, and species richness [28–30].

Moreover, together with mid-water trawls, benthic trawls and

dredges can incur a substantial portion of incidental by-catch [31].

Beyond the predator-prey roles that most finfish play in marine

ecosystems, invertebrates have more diverse functions and more

often provide essential ecosystem services such as maintaining

water quality [32,33], regenerating nutrients [34], providing

nursery and foraging habitat [35], and preventing algal over-

growth through grazing [36] (Fig. 4C). It has been shown that the

massive historic removal of oysters, such as in Chesapeake Bay,

was associated with increases in eutrophication and hypoxia [33].

We aggregated mean catch per year from 2000–2004 by

functional groups to assess the potential removal impact (Fig. 4D,

Table S4) (see Materials and Methods and Text S1). All invertebrate

taxa form potentially important roles as prey for higher trophic

levels while most cephalopods and crustaceans also perform

predatory roles. Especially bivalve, but also krill and some sea

cucumber fisheries, represent a substantial removal by volume (3

million t/year) of filter feeders. We estimate the removal of

bivalves alone to equate to a loss of *11 million Olympic-sized

swimming pools (*2:8:1010 m3) in filtering capacity per day in

2000–2004 (Text S1). In addition, many bivalves form beds,

banks, or reefs that structure the seafloor and provide important

habitat [35]. Invertebrate fisheries further remove *1:2 million t

of detritivores and scavengers and *1:3 million t of herbivores

annually. Although recruitment and re-growth will compensate for

some of these losses, the direct and indirect short- and long-term

ecosystem effects of these removals are largely unknown.

Our results demonstrate that despite overall increasing catches,

diversity, and country participation in global invertebrate fisheries,

there is strong evidence that the underlying trends in many

individual fisheries are less optimistic. Our new and more robust

analysis of catch trends suggests that an increasing percentage of

invertebrate fisheries may be over-exploited, collapsed, or closed.

Some invertebrate fisheries, such as the rock lobster fishery in

western Australia, have existed for a long time and are well-

managed [9], yet even there factors beyond the management

system, such as climate change, can present major challenges.

However, the same is not true for many newer fisheries like those for

sea urchins [5,12] and sea cucumbers [27] for which new fisheries

develop further away from their market(s) and at an increasingly

rapid rate, likely driven by strong market forces. This means that

global industries, markets, and free trade may enable the rapid

expansion of new fisheries before scientists and managers can step in

and make sensible decisions to secure the long-term, sustainable use

of these resources [5]. On the one hand, we risk losing some of the

last remaining viable and financially lucrative fisheries, bringing

financial and social hardship to a large number of small

communities dependent on these fisheries for income or food. At

the same time, the population and ecosystem consequences of many

invertebrate fisheries are largely unknown and unassessed [6],

although there are notable exceptions [8–11]. Whereas there is

increasing assessment, regulation, and rebuilding of finfish fisheries

to achieve more sustainable harvesting [7], many invertebrate

fisheries do not enjoy the same awareness or attention. Many of the

described patterns are reminiscent of an earlier phase in finfish

fisheries during which the rate of finding new fishing areas, new

Figure 2. Expansion of invertebrate catch since the 1950s across taxa. (A) crustaceans, (B) bivalves and gastropods, (C) cephalopods, and (D)
echinoderms. Upper lines indicate total catch for each group and underlying lines indicate catch for subgroups. Dark lines represent smooth
estimates obtained from a loess smoother (smoothing span 50% of the data). Light lines indicate the unfiltered catch trends.
doi:10.1371/journal.pone.0014735.g002
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target species, and more efficient gears masked overall catch trends

[14]. However, because of improved industrial fishing gear and

global networks that allow rapid and accessible transport, we may

be progressing through invertebrate fishery phases even faster.

In order to prevent further uncontrolled expansion and instead

aim for a more sustainable development of invertebrate fisheries,

we highlight the need for a global perspective in their management

combined with local assessment, monitoring, and enforcement of

fisheries regulations. A global perspective is essential to identify

roving buyers, monitor foreign investments, and consider CITES

(U.N. Convention on International Trade in Endangered Species)

listing where appropriate [5]. Also, the displacement of fishing

effort from highly- to less-regulated regions and illegal, unreported,

and underreported (IUU) catches requires global regulations in

invertebrates and finfish fisheries alike [7]. On a regional and local

scale, stock assessments are infrequently or not performed for

many invertebrate fisheries and often lack adequate knowledge on

the species biology, population status, and response to exploitation

[6]. Invertebrates are rarely monitored in research trawl surveys

[7], and independent research surveys to assess population trends,

by-catch, and habitat impacts of invertebrate fisheries are rarely

done for many newer fisheries [5,6,12]. Based on such limited

knowledge, the sustainable exploitation of invertebrates for

fisheries may be difficult to achieve [13].

Figure 3. Status, drivers, and rate of development of invertebrate fisheries. (A) Estimated status of invertebrate fisheries over time as
expanding (green), fully exploited (yellow), over-exploited or restrictively managed (orange), and collapsed or closed (dark red/brown) based on catch
data. Light green indicates fisheries with less than 10 years of data at year of assessment. These fisheries were not evaluated. (B) Distance from Hong
Kong vs. year of first peak in catch for sea cucumber fisheries in different countries. Line represents least squares regression (r = 0.62, p = 0.002), and
shaded area represents 95% confidence interval. Note that the analysis presented here differs from that reported in [21], see Text S1. (C) Meta-analysis
of correlation between fishery initiation year and time to peak catch across 10 invertebrate taxonomic groups. Dots represent median correlation
coefficients, lines represent 95% confidence intervals, and diamonds represent fixed (FE) and random effect (RE) pooled estimates (Text S1).
doi:10.1371/journal.pone.0014735.g003

Global Invertebrate Fisheries

PLoS ONE | www.plosone.org 5 March 2011 | Volume 6 | Issue 3 | e14735



Figure 4. Potential ecosystem effects of invertebrate fisheries. Habitat impacts expressed as (A) total invertebrate catch and (B, inset in A)
number of taxa fished by different gear types. (C) Ecosystem role of invertebrate taxa belonging to different functional groups and trophic levels (Text
S1). Dark and light blue indicate primary and secondary roles respectively (Text S1). (D) Removal impact expressed as total catch removed by
functional group as categorized in C (only the primary roles were included).
doi:10.1371/journal.pone.0014735.g004
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In contrast, after many decades of increasing exploitation and fish

stock depletion, concerted management efforts in several regions

around the world achieved the reverse: a reduction in overall

exploitation rate and an increase in stock biomass in several finfish

fisheries [7]. This was achieved by a combination of management

tools adapted to local conditions as well as strong legislation and

enforcement. Similar measures can be implemented in invertebrate

fisheries to prevent current and future trajectories of depletion [10].

As an example, the addition of co-management and property rights

in Chilean artisanal gastropod fisheries solved many overexploita-

tion concerns, substantially increasing catch per unit effort and

mean individual size [11]. Similarly, the New Zealand rock lobster

fishery was on a path of declining abundance before a reduction in

effort and season length substantially increased abundance, catch

rates, and profitability [8]. Such successes provide a great

opportunity to inform the management of other newer fisheries. It

is our hope that increasing awareness of the ecological and

economic importance of invertebrates may spur more rigorous

scientific assessment, precautionary management, and sustainable

exploitation to ensure long-term resilience of invertebrate popula-

tions, ocean ecosystems, and human well-being.

Materials and Methods

Temporal and spatial catch trends
The Sea Around Us catch data are recorded by (i) country and

(ii) LME for which catches are assigned to 30630 minute cells

[37]. We mapped spatial patterns in global catches as the mean

annual invertebrate catch per 100 km2 in each LME from 2000–

2004 (Text S1). We also mapped spatial patterns of global catches

for 4 major taxonomic groups (Fig. S1). Temporal trends from

1950–2004 were derived for overall invertebrate catch, total finfish

and invertebrate catch, and mean invertebrate catch per country

per year. Wherever possible, we corroborated the observed trends

with recent taxa-specific global reviews (Text S1).

Globally, over 1200 taxonomic groups and species are reported

caught in invertebrate or finfish fisheries, however, only the top

species are recorded individually by the Sea Around Us Project

with the remaining aggregated into groups such as ‘‘crustaceans’’

and ‘‘molluscs’’. We obtained catch data for a total of 302 ‘‘taxa’’

(including 213 species) and analyzed the number of taxa fished

over time, the number of countries fishing, and catch trends for 4

aggregated taxonomic groups (crustaceans, bivalves, echinoderms,

and cephalopods), and 12 species groups. To some extent, the

increasing diversity of taxa is a function of the increasing

taxonomic precision of reporting over time. Therefore, we

approximated the degree to which the increasing diversity

reflected a true trend of an increasing number of species being

targeted by fisheries (Fig. S2, Text S1).

The designation of countries can change over time; however,

such changes are reflected in the overall number of countries

reporting any catch for both finfish and invertebrate species, which

we included as a reference (Fig. 1C). Overall, the country

designation variation was small compared to the much larger

changes of increasing participation in invertebrate fisheries.

Nonetheless, we took this overall reporting trend into account

and scaled the number of countries reporting catch of different

invertebrate taxonomic and species groups to the total number of

countries fishing finfish or invertebrates in any given year (Fig. S3).

Assessment of fishery status from catch trends
Previous attempts have been made to categorize the status of

fisheries using catch data [1,22]. However, these approaches (i) can

incorrectly categorize a fishery as over-exploited or collapsed due to

single or multiple years of anomalous high catch and (ii) require all

non-declining fisheries to be categorized as fully-exploited by the

end of the time series. We developed a modified method for defining

fishery status designed to take into account these two shortcomings

by (i) applying a loess smoother to downweight outlying values and

(ii) allowing fisheries to remain expanding at the end of the time

series (Text S1). Further we assessed fishery status dynamically year-

by-year to treat old and new fisheries equally (Fig. S5, Text S1).

Dynamically evaluating the loess smoothed catches each year, a

fishery was considered ‘‘expanding’’ until there were at least 5 years

since a maximum in smoothed catch. A fishery was then defined as

‘‘fully-exploited’’. If smoothed catch increased again, a fishery

would be classified as ‘‘expanding’’. When smoothed catch was less

than 50% of a previous peak in catch, a fishery was defined as ‘‘over-

exploited’’. A fishery was defined as ‘‘collapsed or closed’’ when

smoothed catch fell below 10% of peak catch. We demonstrate the

robustness of our approach with simulated data (Fig. S7, Fig. S8,

Text S1).

Correlation of distance from Hong Kong
We were interested in testing whether some invertebrate

fisheries followed a pattern of spatial expansion and depletion

over time as has been shown for sea urchins [5]. Few species,

however, have a single strong market, making such detection

difficult. For sea cucumbers, the majority of catch is imported by

Hong Kong [21,38]. Thus we used the great circle distance

between Hong Kong and the largest cities in each country with a

sea cucumber fishery as a proxy for the transportation distance

between the importing and exporting nations. We separated the

US and Canadian east and west coasts because they are of

substantially differing distances from Hong Kong. We then related

log-transformed distance to the starting year of each fishery, which

we calculated as the year at which loess smoothed catch passed

10% of its first peak in catch (Fig. S9A, Text S1). See the

subsequent section Analysis of fishery development time for a description

of the calculation of the first peak in catch. We cross-checked the

starting years with published records (Table S2).

Analysis of fishery development time
We tested whether there was evidence that newer fisheries were

developing more rapidly over time by checking for a relationship

between when invertebrate fisheries began and the time when they

achieved their first peak in catch. Here, a fishery was defined as 1

of the 12 larger taxonomic groupings as reported by country

(Fig. 2). We excluded sea stars and krill due to the limited number

of countries with substantial fisheries. To focus on substantial

fisheries, we discarded all fisheries less than 1000 t/year, except

for lower-volume sea urchin and sea cucumber fisheries for which

we used a minimum catch of 250 t/year. Our overall conclusions

were invariant to choices of cutoffs from 500–2000 t (Text S1).

Catch trajectories can have multiple smaller local peaks together

with an overall peak. If we naively calculated the peak catch from

the entire available catch trajectory we would be more likely to be

measuring local peaks (rather than overall peaks) with fisheries that

started more recently. To avoid this time based bias we developed

a dynamic assessment method that calculated the time it took for

each fishery to develop to the first peak in catch (Fig. S9, Text S1).

For each year, we fit a loess curve to the data up to that year and a

fishery was considered to have reached a peak in catch if the

following conditions were true: (1) a maximum in catch occurred

and was less than 3 years from the end of the catch series at that

step, (2) a maximum in catch occurred that was at least 500 t for

most taxa or 125 t for echinoderms, and (3) the maximum in catch

was at least 10% greater than the catch at the current time step.

Global Invertebrate Fisheries

PLoS ONE | www.plosone.org 7 March 2011 | Volume 6 | Issue 3 | e14735



For fisheries that had yet to reach a peak in catch by the end of the

time series, we assigned simulated values based on the observed

times to a peak in catch for other fisheries (Fig. S10). We

repeatedly re-assigned these simulated values and evaluated the

correlation between year of initiation and time to the first peak in

catch. See Text S1 for further details.

Ecosystem effects
To assess the potential habitat effects of different invertebrate

fisheries, we calculated the total invertebrate catch and the

number of taxa fished by different gear types. The Sea Around Us

Project reports 19 types of fishing gear for invertebrates, which we

grouped into 6 broader groups based on their potential habitat

impact (Table S3, Text S1). To evaluate the potential food web

and ecosystem impacts of different invertebrate fisheries, we

assigned primary and secondary functional groups to larger species

groupings according to the primary literature and reference books

(Table S4). Trophic levels were obtained from the Sea Around Us

Project, where they were mainly derived from Froese and Pauly

[39]. We then assessed the overall removal of each primary

functional group as the total catch per functional group averaged

over 2000–2004. This does not include renewal of resources via

recruitment and re-growth. We also estimated the consequence of

removing filter-feeding bivalves from the ocean in more detail, in

terms of their capacity to filter water, using filtration rates reported

in the literature. We converted these values into Olympic-sized

swimming pools for comparison (Text S1).

Supporting Information

Text S1 Supplementary description of the methods.

Found at: doi:10.1371/journal.pone.0014735.s001 (0.15 MB

PDF)

Figure S1 Mean annual invertebrate catch by taxonomic group

in each Large Marine Ecosystem (LME) from 2000–2004.

Found at: doi:10.1371/journal.pone.0014735.s002 (1.13 MB TIF)

Figure S2 Effects of taxonomic precision in reporting on

predicted trends in diversity of invertebrates fished. (A) Increasing

reporting of invertebrate taxa fished divided into species level

(blue), larger grouping level (green), and combined (red). Dark

lines represent mean and shaded region represents standard error

assuming a negative binomial distribution of the data. (B–D)

Estimated mean number of invertebrate taxa fished per country

assuming different penalties for increased taxonomic precision.

Dark blue line indicates estimate, light blue shaded region

indicates standard error assuming a negative binomial distribution

of the data, and the dark blue shaded regions indicate an estimated

trend adjusted for increasing taxonomic precision in reporting. (B)

Assumes each loss of an aggregated group results in 2 new species

level designations, (C) assumes 3, and (D) assumes 4.

Found at: doi:10.1371/journal.pone.0014735.s003 (0.24 MB TIF)

Figure S3 Percentage of all countries reporting catch of various

invertebrate taxonomic and species groups. Dark lines represent

smooth estimates obtained from a loess smoother (smoothing span

50% of the data). Light lines represent unfiltered data.

Found at: doi:10.1371/journal.pone.0014735.s004 (0.28 MB TIF)

Figure S4 An example invertebrate catch series arranged by

country for one invertebrate taxa: bivalves. Red lines indicate loess

smoothed fits. Plots are ordered by cumulative catch since 1950.

Vertical grey bars in title bars indicate log transformed cumulative

catch, with bars near the right indicating the greatest cumulative

catch and bars near the left indicating the least cumulative catch.

Found at: doi:10.1371/journal.pone.0014735.s005 (0.69 MB TIF)

Figure S5 Illustration of our algorithm for dynamically assigning

fishery status. Dots represent raw catch values, grey lines represent

3 of the loess functions fit to the data. Loess functions were built

dynamically for each year but for clarity we show only the 3

functions which resulted in a change in status. By default a fishery

was categorized as ‘‘expanding’’ until one of the following criteria

was met: when there was at least 5 years since a maximum in the

smoothed catch the fishery was classified as ‘‘fully exploited’’,

when smoothed catch fell below 50% of maximum smoothed

catch the fishery was classified as ‘‘over-exploited’’, and when

smoothed catch fell below 90% of maximum catch the fishery was

classified as ‘‘collapsed or closed’’.

Found at: doi:10.1371/journal.pone.0014735.s006 (0.17 MB

TIF)

Figure S6 Percentage of fisheries for species from various

functional groups that were categorized into the 4 fishery status

categories. See section Assessment of fishery status from catch trends and

Fig. 4C for a description of the how the species were assigned to

the functional groups.

Found at: doi:10.1371/journal.pone.0014735.s007 (0.18 MB

TIF)

Figure S7 Demonstration of our fishery status assessment

algorithm to simulated data. (A–C) Example of simulated

increasing and then stationary catch series with multiplicative

log-normal error about a random mean: log standard deviation of

error of 0.10 (A), 0.25 (B), and 0.50 (C). Black lines indicate

unfiltered catch. Red lines indicate loess smoothed fits. (D–F)

Predicted stock status (expanding = green, fully exploited = yellow,

over-exploited or restrictively managed = orange) from simulated

data showing the robustness of our method to variability in the

data as indicated for A, B, and C, respectively.

Found at: doi:10.1371/journal.pone.0014735.s008 (0.25 MB TIF)

Figure S8 Characteristics of actual and simulated catch series.

Frequency of log of mean catch values by fishery and log of the

standard deviation of the residuals after fitting a loess smoother to

each series (span = 0.5) from global invertebrate fisheries (A, B;

grey background shading), and simulated series with s= 0.1 (C,

D), s= 0.25 (E, F), and s= 0.5 (G, H). See section Verification of

fishery status estimation using simulated data for a description of s. Red

and blue vertical lines indicate median values.

Found at: doi:10.1371/journal.pone.0014735.s009 (0.39 MB

TIF)

Figure S9 Methods used to determine years of initial peaks in

catch. (A) Illustration of our algorithm for assigning year of initial

peak catch. Dots represent raw catch values, grey line represents

loess function fit through the entire catch series, and red line

indicates loess function fit through data up to the year of initial

peak catch. A fishery was considered to have peaked if there was at

least 500 tonnes of catch, at least a 10% decline from peak catch,

and at least 3 years of data after the peak in catch. This algorithm

was applied dynamically each year until the first instance of peak

catch was observed. (B) Illustration of sampling time to peak for

one censored fishery (Fishery A, red circle). Fisheries for which

time to peak could be calculated are shown with solid dots in the

shaded blue triangle. Censored fisheries for which time to peak

was sampled are shown with open dots. Vertical dashed line

indicates known year in which Fishery A surpassed 10% of its

maximum observed catch. Fishery A could therefore have been

assigned a time to peak from any value above 10 years, as

indicated by a horizontal dashed line, and before 1970 (dark blue

shaded region). This sampling was repeated 1000 times.
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Found at: doi:10.1371/journal.pone.0014735.s010 (0.25 MB TIF)

Figure S10 An example of time to peak catch vs. year of fishery

initiation by taxonomic grouping for one random sampling of

censored fisheries (red dots). Black dots represent known data

points. In our analysis, the red dots were resampled 1000 times

from possible time to peak values. Blue dots represent fisheries for

which there were no fisheries to sample from. These were set to

the maximum observed number of years for the earliest fishery

affected (the left-most blue dot).

Found at: doi:10.1371/journal.pone.0014735.s011 (0.34 MB TIF)

Table S1 Invertebrate catch for the 6 LMEs with the greatest

total catch from 2000–2004. Also shown are the 3 taxonomic

groups within each LME with the greatest catch. Catch values

shown are annual averages over the 5-year span. LMEs are

ordered by decreasing catch and within the LMEs the taxonomic

groups are ordered by decreasing catch of that taxon.

Found at: doi:10.1371/journal.pone.0014735.s012 (0.03 MB

PDF)

Table S2 Distance and starting year of sea cucumber fisheries by

country. Listed are each country’s largest city (by population), its

location, its distance from Hong Kong, the starting year of the sea

cucumber fishery, and a verification reference.

Found at: doi:10.1371/journal.pone.0014735.s013 (0.09 MB

PDF)

Table S3 Major gear groupings of gear categories from the Sea

Around Us Project catch database.

Found at: doi:10.1371/journal.pone.0014735.s014 (0.03 MB

PDF)

Table S4 Classification of invertebrate taxonomic groups into

primary and secondary functional groups. Taxa are ordered

approximately by decreasing trophic level.

Found at: doi:10.1371/journal.pone.0014735.s015 (0.05 MB

PDF)

Acknowledgments

We thank T.A. Branch, R.I. Perry, N.L. Shackell, B. Worm, E.L. Hazen,

and 2 anonymous reviewers for comments that greatly improved this

manuscript. W. Blanchard and C. Field provided helpful statistical advice

and discussions on the methods.

Author Contributions

Conceived and designed the experiments: SCA JMF HKL. Analyzed the

data: SCA JMF HKL. Contributed reagents/materials/analysis tools: RW.

Wrote the paper: SCA JMF RW HKL.

References

1. FAO (2009) The state of world fisheries and aquaculture 2008. Technical report,

Food and Agriculture Organization of the United Nations, Rome, Italy.
2. Leiva G, Castilla J (2002) A review of the world marine gastropod fishery:

evolution of catches, management and the Chilean experience. Rev Fish Biol

Fisheries 11: 283–300.
3. Kirby MX (2004) Fishing down the coast: historical expansion and collapse of

oyster fisheries along continental margins. Proc Natl Acad Sci USA 101:
13096–13099.

4. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, et al. (2006)
Depletion, degradation, and recovery potential of estuaries and coastal seas.

Science 312: 1806–1809.

5. Berkes F, Hughes TP, Steneck RS, Wilson JA, Bellwood DR, et al. (2006)
Globalization, roving bandits, and marine resources. Science 311: 1557–1558.

6. Anderson SC, Lotze HK, Shackell NL (2008) Evaluating the knowledge base for
expanding lowtrophic-level fisheries in Atlantic Canada. Can J Fish Aquat Sci

65: 2553–2571.

7. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, et al. (2009) Rebuilding
global fisheries. Science 325: 578–585.

8. Breen P, Kendrick T (1997) A fisheries management success story: the Gisborne,
New Zealand, fishery for red rock lobsters (Jasus edwardsii). Mar Freshwater Res

48: 1103–1110.
9. Phillips BF, Melville-Smith R, Caputi N (2007) The western rock lobster fishery

in western Australia. In: McClanahan TR, Castilla JC, eds. Fisheries

management: progress towards sustainability. Oxford, UK: Blackwell Publish-
ing. pp 231–252.

10. Hilborn R, Orensanz JM, Parma AM (2005) Institutions, incentives and the
future of fisheries. Philos Trans R Soc London [Biol] 360: 47–57.

11. Castilla J, Fernandez M (1998) Small-scale benthic fisheries in Chile: On co-

management and sustainable use of benthic invertebrates. Ecol Appl 8: 124–132.
12. Andrew NL, Agatsuma Y, Ballesteros E, Bazhin E, Creaser EP, et al. (2002)

Status and management of world sea urchin fisheries. Oceanogr Mar Biol Annu
Rev 40: 343–425.

13. Perry RI, Walters C, Boutillier J (1999) A framework for providing scientific
advice for the management of new and developing invertebrate fisheries. Rev

Fish Biol Fisheries 9: 125–150.

14. Pauly D, Christensen V, Guenette S, Pitcher TJ, Sumaila UR, et al. (2002)
Towards sustainability in world fisheries. Nature 418: 689–695.

15. Essington TE, Beaudreau AH, Wiedenmann J (2006) Fishing through marine
food webs. Proc Natl Acad Sci USA 103: 3171–3175.

16. Worm B, Myers RA (2003) Meta-analysis of cod-shrimp interactions reveals top-

down control in oceanic food webs. Ecology 84: 162–173.
17. Jamieson G (1993) Marine invertebrate conservation: Evaluation of fisheries

over-exploitation concerns. Amer Zool 33: 551–567.
18. Zeller D, Pauly D, eds (2007) Reconstruction of marine fisheries catches for key

countries and regions (1950–2005). Fisheries Centre Research Reports. Vol. 15

Issue 2.
19. Pauly D (2008) Global fisheries: a brief review. J Biol Res-Thessalon 9: 3–9.

20. Jamieson GS, Campbell A, eds (1998) Proceedings of the North Pacific
Symposium on Invertebrate Stock Assessment. Vol. 125 of Canadian Special

Publication of Fisheries and Aquatic Sciences, NRC Research Press.

21. Anderson SC, Flemming JM, Watson R, Lotze HK (2010) Serial exploitation of

global sea cucumber fisheries. Fish Fish, In press.

22. Froese R, Kesner-Reyes K (2002) Impact of fishing on the abundance of marine

species. ICES Council Meeting Report CM 2002/L 12: 1–16.

23. Shepherd S, Turrubiates-Morales J, Hall K (1998) Decline of the abalone fishery at

La Natividad, Mexico: Overfishing or climate change? J Shellfish Res 17: 839–846.

24. Salomon AK, Tanape NM, Huntington HP (2007) Serial depletion of marine

invertebrates leads to the decline of a strongly interacting grazer. Ecol Appl 17:

1752–1770.

25. Sethi SA, Branch TA, Watson R (2010) Fishing is business: Trophic level, value,

and the global pattern of fishery development. Proc Natl Acad Sci USA 107:

12163–12167.

26. Botsford L, Campbell A, Miller R (2004) Biological reference points in the

management of North American sea urchin fisheries. Can J Fish Aquat Sci 61:

1325–1337.

27. FAO (2008) Sea cucumbers: A global review of fisheries and trade. Technical Report

516, Food and Agriculture Organization of the United Nations, Rome, Italy.

28. Hiddink J, Jennings S, Kaiser M, Queiros A, Duplisea D, et al. (2006)

Cumulative impacts of seabed trawl disturbance on benthic biomass, production,

and species richness in different habitats. Can J Fish Aquat Sci 63: 721–736.

29. Kaiser M, Clarke K, Hinz H, Austen M, Somerfield P, et al. (2006) Global

analysis of response and recovery of benthic biota to fishing. Mar Ecol Prog Ser

311: 1–14.

30. Tillin H, Hiddink J, Jennings S, Kaiser M (2006) Chronic bottom trawling alters

the functional composition of benthic invertebrate communities on a sea-basin

scale. Mar Ecol Prog Ser 318: 31–45.

31. Kelleher K (2005) Discards in the world’s marine fisheries. An update. Rome:

Food and Agriculture Organization of the United Nations.

32. Newell RIE (1988) Ecological changes in Chesapeake Bay: Are they the result of

overharvesting the American oyster, Crassostrea virginica? In: Understanding the

Estuary: Advances in Chesapeake Bay Research. BaltimoreMaryland: Chesa-

peake Research Consortium Publication. pp 29–31.

33. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, et al. (2001)

Historical overfishing and the recent collapse of coastal ecosystems. Science 293:

629–637.

34. Uthicke S (2001) Nutrient regeneration by abundant coral reef holothurians.

J Exp Mar Biol Ecol 265: 153–170.

35. Peterson CH, Grabowski JH, Powers SP (2003) Estimated enhancement of fish

production resulting from restoring oyster reef habitat: quantitative valuation.

Mar Ecol Prog Ser 264: 249–264.

36. Tegner MJ, Dayton P (2000) Ecosystem effects of fishing in kelp forest

communities. ICES J Mar Sci 57: 579–589.

37. Watson R, Alder J, Kitchingman A, Pauly D (2005) Catching some needed

attention. Mar Pol 29: 281–284.

38. Ferdouse F (2004) World markets and trade ows of sea cucumber/beche-de-mer.

In: Advances in sea cucumber aquaculture and management. Rome, Italy: Food

and Agriculture Organization of the United Nations. pp 101–116.

39. Froese R, Pauly D, eds (2000) Fishbase 2000: concepts, design and data sources.

ICLARM, Los Ba,nos, Philippines.

Global Invertebrate Fisheries

PLoS ONE | www.plosone.org 9 March 2011 | Volume 6 | Issue 3 | e14735


