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INTRODUCTION

Theory and empirical evidence indicate that global
climate change is a factor increasingly affecting the
ecosystems of terrestrial and marine biomes (e.g. Cra-
mer et al. 2001, Hughes et al. 2003, Parmesan & Yohe
2003). However, far less research is conducted on
ocean impacts (e.g. through fisheries) than on terres-
trial systems. Environmental conditions in the ocean —
such as acidity, ocean currents, and productivity — are
likely to change (Hobday et al. 2006), and global mean
air temperature is predicted to increase at a rate of
around 0.2°C per decade during this century (IPCC
2007). Climate warming may lead to a contraction of
the highly productive marginal sea ice biome and an
increase in global primary production in the ocean of

0.7 to 8.1%, with large regional variations (Sarmiento
et al. 2004). These would have significant impacts on
marine ecosystems and on human society, which de-
pends on fish for food and income (Walther et al. 2002).

Macroecology, trophic energetics, and metabolic
scaling provide theories that are particularly applica-
ble to predict the effects of global changes on marine
fisheries potential. Macroecology studies the relation-
ship between organisms and their environment, inclu-
ding patterns of abundance, distribution, and diver-
sity of species at large spatial and temporal scales
(Brown 1995, Gaston & Blackburn 2000, Blackburn &
Gaston 2003). Specifically, empirical and comparative
studies in macroecology of terrestrial and aquatic
organisms reveal consistent relationships between
abundance and other ecological, physiological, and
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environmental attributes such as distribution and
body size (Gaston et al. 1997). For example, abun-
dance between species is positively related to distrib-
ution size in animal assemblages (Hanski 1982, Brown
1984, Gaston & Blackburn 2000). Moreover, abun-
dance is determined by metabolic scaling and trophic
energetics (flow and storage of energy in the ecosys-
tem) of the organisms (Jennings & Mackinson 2003).
For example, the metabolic rate of an organism is
related to body mass by an allometric relationship
(Kleiber 1932). Body mass is also related to an ani-
mal’s life history and trophic ecology (Charnov 1993,
Gaston & Blackburn 2000, Woodward et al. 2005, Jen-
nings et al. 2007). In addition, the energy requirement
of a population (partly determined by the average
metabolic rate of the individuals) and its trophic eco-
logy are related to population abundance (Damuth
1981, Gaston & Blackburn 2000, Blackburn & Gaston
2003, Jennings & Mackinson 2003, Brown et al. 2004,
Jennings et al. 2007). Some of these attributes (e.g.
distribution range) are sensitive to climate change
(Brown 1995, Roessig et al. 2004). Given that fisheries
productivity is a function of abundance, species’ geo-
graphic ranges, life histories, and ecology, it is pos-
sible to predict first-order effects of climate change on
fisheries productivity by predicting changes in these
variables.

Studying the application of macroecological theory
to predict climate change effects at a global scale is
made possible by the availability of global databases of
biology and fisheries. For example, FishBase (www.
fishbase.org) provides fundamental life history infor-
mation (e.g. maximum body length, trophic level) of all
extant species of marine fishes. The databases compi-
led by the Sea Around Us Project (www.seaaroundus.
org) consist of predicted distribution ranges and
spatially explicit catch data (expressed in 30’ latitude ×
30’ longitude grid cells) of over 1300 commercially
exploited fish and invertebrate taxa. At the time of
writing, 1000 of these were at the species level and
were used here. The above databases can be used to
develop empirical relationships to predict catch poten-
tial of exploited marine species from simple life history
and biogeography attributes.

In this study, we aimed to apply macroecology the-
ory to develop an empirical model to determine catch
potential of commercially exploited fishes and inverte-
brates from their life history, ecology, and biogeogra-
phy. Here, catch potential is defined as the maximum
annual catch when a species is fully exploited, aver-
aged over several years. The life history and biogeo-
graphy attributes, including trophic level, range size,
and primary productivity, were obtained from the Sea
Around Us Project database and FishBase (see URLs
above, which also provide details on data sources).

Based on the developed empirical relationship, we dis-
cuss the potential effects of climate change on catch
potential of exploited fishes and invertebrates.

MATERIALS AND METHODS

Theoretical model. The metabolic rate of an organ-
ism scales almost universally with body size. This rela-
tionship can be described by an allometric equation
(Kleiber 1932):

(1)

where I is whole-organism metabolic rate, W is body
mass, c is a normalization constant independent of
body size, and b is the allometric exponent. The expo-
nent b can be approximated as 0.75 for all species
(e.g. Kleiber 1932, West et al. 1997, 1999, Gillooly et
al. 2001).

Assuming that total energy required to support me-
tabolism (E ) is proportional to whole-organism meta-
bolic rate I, total energy required to support a popula-
tion of N individuals at equilibrium carrying capacity
can be obtained from:

(2)

where c’ is a constant.
The energy available (E ) for a specific population

of animals at trophic level λ in an ecosystem can be
calculated from:

(3)

where P is total primary production, TE is the transfer
efficiency, and γ is the proportion of energy at trophic
level λ that is utilized by the population (e.g. Ware
2000). Therefore, under equilibrium conditions, the
total energy required to support the population can be
estimated by combining Eqs. (2) & (3):

(4)

Biomass at carrying capacity (B∞) can be calculated
from equilibrium abundance at carrying capacity (N )
and average individual body mass (W ):

(5)

Substituting Eq. (5) into Eq. (4):

(6)

Maximum sustainable yield (MSY) is defined as the
highest average theoretical equilibrium catch that can
be continuously taken from a stock under average
environmental conditions (Hilborn & Walters 1992).
Based on a simple logistic population growth function
and under equilibrium conditions, MSY can be defined
as:

c b’ × × = × ×∞
− −B W P TE1 1γ λ

B N W∞ = ×

N W P TE’× × = × × −c b γ λ 1

E P TE= × × −γ λ 1

E N W’= × ×c b

I W= ×c b
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(7)

where r is the intrinsic rate of population increase and
B∞ is the biomass at carrying capacity (Schaefer 1954,
Sparre & Venema 1992). Rearranging Eq. (7) to ex-
press B∞ in terms of MSY and r :

(8)

Substituting Eq. (8) into Eq. (6):

(9)

Furthermore, W scales negatively and allometrically
with intrinsic rate of population increase (r ) (Fenchel
1974):

(10)

where d and h are constants. Thus,

(11)

The values of the scaling exponents b and h are ap-
proximately 0.75 and –0.25, respectively (Fenchel
1974, Jennings et al. 2007). Therefore, W can be
eliminated from the equation:

(12)

Taking logarithmic transformation at both sides, and
rearranging terms,

(13)

However, in many cases, only a fraction of the entire
geographic range of a species is exploited. Assuming
that the exploited range encompasses unit stocks, pri-
mary production from the exploited range (P ’ ) is con-
sidered in calculating the average MSY. MSY from the
exploited range, or MSY ’, can be calculated from:

(14)

Furthermore, as average TE is generally around 0.10
in marine ecosystems (Pauly & Christensen 1995), it is
negative on a logarithmic scale and approximately con-
stant between species and trophic levels. Therefore,

(15)

where a and g are constants.
Developing an empirical relationship. Using empir-

ical data from commercially exploited fishes and inver-
tebrates, we developed an empirical relationship to

predict average maximum catch from a species. We
used a generalized linear model (GLM; Venables &
Ripley 1999) to develop an empirical relationship be-
tween observed average maximum catch, primary pro-
duction, geographic range, and species’ ecology. The
empirical equation was based on the theoretical rela-
tionship developed in Eq. (15):

(16)

where m is the intercept and c1 and c2 are coefficients
of the regression model, respectively, and ε is an error
term. Since the proportion of primary production avail-
able at a trophic level that is used by a population (γ) is
not available and difficult to estimate for most marine
species, we assumed it to be a random variable incor-
porated in the intercept and error terms. As maximum
catch potential is positively related to primary produc-
tivity, we hypothesized that the values of c1 should be
positive. Moreover, since TE is always smaller than
unity, and its logarithmic form is incorporated in the
coefficient of λ, c2 should be negative.

The average maximum annual catch from a species
was calculated from catch time-series data. Global
catches of 1000 species of fishes and invertebrates
from 1950 to 2003 were obtained from the Sea Around
Us Project (www.seaaroundus.org). The catch data,
compiled from statistics produced by the United Na-
tions Food and Agriculture Organization (FAO) and
other sources, were spatially disaggregated onto a
30’ latitude × 30’ longitude grid map of the world ocean
(Watson et al. 2004). For each of the 1000 species, we
calculated the average maximum annual catch, a
proxy of MSY’, from the mean of the 5 highest annual
catches across the time series. Alternatively, the high-
est annual catch from the catch time series was used to
test the sensitivity of our analysis to the method for
estimating MSY’.

For species with a relatively short history of exploita-
tion, the highest annual catch averaged over 5 yr may
not depict the maximum catch potential, as the popula-
tion may be underexploited. Thus, the estimated aver-
age maximum annual catch may be an underestima-
tion of the true maximum catch potential. Therefore,
we calculated the number of years with catch data (CT)
by species and introduced it as an additional variable
to correct for such bias. We hypothesized that if
exploitation history is longer (thus yielding longer
catch time-series), the average maximum annual catch
would approach the true maximum catch potential, i.e.

Average maximum annual catch × CT → MSY’ (17)

We also attempted to correct for the possibility of
underestimation of catches resulting from taxonomic
aggregation in the catch records. In catch statistics,

log ’ log ’10 1 10 2MSY m + c + c += × ×P λ ε

log ’ log ’ logMSY – a + + g= ×P λ γ

log ’ log( ’) ( ) log logMSY + + –= − ×P TEλ γ1 llog
’4 × c

d

log log ( ) log log logMSY + + –= − ×P TEλ γ1
4 ’× c

d

4 1’× × = × × −c
d

MSY γ λP TE

4 1’ ( )× × ×
×

= × ×c MSY
d

b –

h

W
W
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−
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catches were often reported in aggregated taxonomic
groups at genus, family, or higher taxonomic levels.
For instance, catches of small yellow croaker may be
reported as Larimichthys sp. or sciaenids. Thus, cat-
ches of small yellow croaker might be underestimated.
To correct for such bias, we also calculated the catch
from genera and families that originated from the same
exploited range of the corresponding species. To be
consistent with the maximum catch estimation, for
each species we calculated the average value from the
5 years when the highest catches were recorded. We
hypothesized that catches reported as higher taxo-
nomic aggregates (genera and families) are approxi-
mately proportional to the degree of misreporting (and
thus underestimation) of the species’ catch. Catch at
higher taxonomic aggregates (HTC) was included in
the multiple regression model. Therefore, the model
becomes:

(18)

For each species, P ’ in Eq. (18) was calculated from to-
tal primary production in the species’ exploited range:

(19)

where Pi is the annual primary production per unit
area (g C m–2) of a spatial cell i in a 30’ latitude × 30’
longitude grid map of the world ocean; Ai is the area of
the spatial cell i; and n is the total number of spatial
cells where the species’ catch was recorded. Estimates
of ocean primary production included production from
phytoplankton only, i.e. production from seagrasses or
benthic micro- and macro-algae was not accounted for.
The estimates were based on a model (Platt & Sathyen-
dranath 1988) that estimates depth- integrated primary
production from the chlorophyll pigment concentration
obtained from the SeaWiFS satellite (http://seawifs.
gsfc.nasa.gov/SEAWIFS.html) and photosynthetically
active radiation (e.g. Bouvet et al. 2002). The estimated
primary production, which pertains to the period from
October 1997 to September 1998, was then inter-
polated for small areas without coverage to provide
estimates that covered the entire world ocean on a
30’ latitude × 30’ longitude grid (Lai 2004).

We attempted to correct for a statistical bias in esti-
mating total primary production from the exploited
range of the species (P ’ ). The estimated species’ area
of occupancy generally increases with the scale of the
spatial grid with an allometric relationship (Kunin
1998):

or (20)

where AS is the estimated area of occupancy at spatial
resolution S, and h and k are constants. The exponent k
depends on a species’ range size, as species with a re-
stricted and aggregated range tend to have a smaller
scaling exponent k than wide-ranging species with
scattered distributions (Fig. 1). Thus, when an average
scaling exponent k is applied to all studied species, as
in the case of our analysis, the true area of occupancy of
the species is likely to be overestimated for species with
a wide geographic range (larger value of k) and under-
estimated for species with a restricted range (Fig. 1).
Since the total annual primary production available for
the species (P ’ ) is a function of the true area of occu-
pancy, the bias resulting from the scale-area relation-
ship should be corrected. Thus, species’ geographic
range size calculated at the 30’ × 30’ spatial scale (A)
was included in Eq. (18) to correct for such biases:

(21)

where c5 is a constant with a sign expected to be nega-
tive.

Predicted geographic ranges for the 1000 fishes and
invertebrates were obtained from the Sea Around Us
Project. Geographic ranges of the species were pre-
dicted from boundaries and preferences of latitudinal
range, depth range, habitats, and published occurrence
range (see Close et al. 2006 for details), and used to cal-
culate the total area of occurrence. Moreover, based on
the spatially-explicit catch data, we calculated the total
area where the geographic range of a species was ex-
ploited, i.e. had a non-zero catch (Ae). Trophic levels,

log ’ log ’10 1 10 2

3

MSY m + c + c +

c

= × ×
×

P λ
log log log10 4 10 5 10CT + c HTC + c +× × A ε

log log logA SS = h + k

A SS = ×h k

P P Ai i
i

n

’ = ×
=

∑
1

log ’ log ’10 1 10 2

3

MSY m + c + c +

c

= × ×P λ
×× ×log log10 4 10CT + c HTC + ε
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also taken from the Sea Around Us Project’s database,
were based on FishBase (www. fishbase.org) for fishes,
and on SeaLifebase (www. sealifebase.org) and other
sources for invertebrates. Trophic level may vary be-
tween different populations of a species because of
differences in local food webs, but, at the scale of our
analysis (global), we used the cross-population average
trophic level of the species. This approximation con-
tributes to the overall variance of the empirical model.

We ran the GLM model specified in Eq. (21) in the
statistical program R. We assumed a Gaussian dis-
tribution error (ε) in the GLM. The validity of this as-
sumption was tested by examining the residuals from
the regression analysis. We examined the normality
assumption of the model with the Shapiro-Wilk test
and tested for existence of outliers with Cook’s dis-
tances test (Cook & Weisberg 1982). Moreover, we
tested for any unexpected non-linearity in the vari-
ables by conducting Alternating Conditional Expecta-
tions analysis (Breiman & Friedman 1985). We used the
acepack package of R to run the analysis. Finally,
using current and climate-shifted distributions of the
small yellow croaker Larmichthys polyactis (Sciaeni-
dae) predicted by an existing dynamic bioclimate en-
velope model (see Cheung et al. 2008 for details) as an
example, we illustrated the application of our model in
assessing the impact of climate change on global fish-
eries. In the case study of the small yellow croaker, the
focus is on the application of the empirical model in
predicting impacts of climate change on fisheries given
some predictions of distribution shift of a species. The
validity of the predicted distribution shift is dealt with
elsewhere (see Cheung et al. 2008).

RESULTS

Predicting maximum annual catch

The average maximum annual catch of the 1000 spe-
cies of fishes and invertebrates were significantly af-
fected by annual primary production in the species’
exploited range, trophic level, geographic range, and
the number of years of records in the catch time-series
(Table 1). Levels of significance for the above terms
were high (p < 0.01). The full model was significant at
the 99% confidence level and explained over 70% of
the variation in the average maximum annual catches
of the species (Fig. 2). The significance of the terms in
the GLM was not affected when a subset of the data
(i.e. including species with CT ≥ 5 yr only, N = 878 spe-
cies) was used (Fig. 2). Annual primary production (P ’),
trophic level (λ), geographic range (A), number of
years of records (CT), and the catch from higher taxo-

191

Fig. 2. Relationship between predicted mean values from the multiple regression and the observed average maximum annual catch
(log-transformed) using (a) full dataset (N = 1000, R2 = 0.703, p < 0.001) and (b) subset of data with number of years with catch data (CT) 

× 5 (N = 878, R2 = 0.606, p < 0.001)

Table 1. Test statistics of the full GLM as specified in Eq. (21).
P ’: annual primary production from exploited range; λ: trophic
level; CT: number of years with catch data; HTC: catch from 

higher taxonomic groups; A: geographic range

Terms Estimate SE t p 

Intercept –2.881 0.299 –9.638 < 0.001 
log10 (P’ ) 0.826 0.051 16.158 << 0.001
λ –0.152 0.046 –3.301 < 0.001
log10 (CT) 1.887 0.076 24.892 << 0.001
log10 (HTC) 0.112 0.022 5.089 < 0.001
log10 (A) –0.505 0.055 –9.269 < 0.001
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nomic groups (HTC) remained highly significant (p <
0.001). Moreover, the explanatory power of the model
remained strong (R2 = 0.67) when alternative estimates
of MSY’ were used. The coefficients of the factors
varied only by an average of about 5.8%.

The effects of the model terms generally agreed with
the theoretical model developed in this paper (Eq. 15;
Table 1). The effect of total annual primary production
from the exploited range was positive, whereas the
effects of trophic level and geographic range were
negative. Moreover, the number of years of exploita-
tion was effective in correcting for the underestimation
of average maximum potential catch in species with
short catch time-series. The empirical model resulting
from the full dataset (N = 1000) to predict maximum
catch potential is:

(22)

The assumptions of multiple regression analysis
(homogenous variance and normality) were generally
met. Residuals from the regression of the full dataset
(N = 1000) were not correlated with the mean fitted
values of the model, i.e. the slope of the
regression between the 2 variables was
not significantly different from 0 (p >
0.05, Fig. 3). This indicated that the
variance of the model was homoge-
nous. A Shapiro-Wilk test showed that
the distribution of the residuals was
significantly different from normal
(Shapiro-Wilk test, p < 0.05); the residu-
als appeared S-shaped on a normal-
quartile plot (Fig. 3). Conversely, when
species with <5 yr of catch records
were excluded from the analysis (re-
sulting N = 878), the distribution of the
residuals became approximately nor-
mally distributed (Shapiro-Wilk test,
p = 0.025), while their variances re-
mained homogenous. Furthermore, the
residuals from the subset of data gener-
ally fell on a straight line in a normal-
quartile plot. Thus, the deviation from
normality in the full dataset resulted
mainly from the highly uncertain data
points. In addition, based on Cook’s
distance test, we did not identify any
significant outliers from the model.

We did not find any unexpected non-
linearity in the relationship between
maximum annual catches and the inde-
pendent variables (Fig. 4). The transfor-

mations of the independent variables resulting from
the Alternating Conditional Expectations analysis
were approximately log-linear for annual primary pro-
duction from exploited range (P ’), geographic range
(A), number of years with catch record (CT), and
catches from higher taxa. The estimated transforma-
tion for trophic level (TL) was approximately linear.
These agree with the transformations that we employed
in the regression model (Eq. 21).

Maximum annual catch and climate change

Given the predicted current and climate-shifted
distributions of the small yellow croaker, its catches
would likely shift northward, although the total
predicted annual catch would remain relatively un-
changed. The predicted current relative distribution
of small yellow croaker centered at approximately
31.25°N (Fig. 5a). Under a hypothetical 2.5°C increa-
se in average global ocean temperature, the dynamic
bioclimate envelope model described by Cheung et
al. (2008) predicted a northward shift in both the
centroid and north-south range limits of its distribu-
tion. Simultaneously, if the ecology of the small yel-

log ’ . . log ’
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low croaker remained the same, its area of occur-
rence was predicted to increase from 770 000 km2 to
1 221 000 km2. Assuming that primary production re-
mained constant at the current level, total primary
production within the distribution range of small
yellow croaker increased by 40.1%.
Using the empirical relationship we
developed (Eq. 21), the predicted
maximum catch potential of small yel-
low croaker did not change signifi-
cantly (p > 0.05) from the current
level under the hypothetical ocean
warming scenario. However, the rela-
tive distribution of the catch potential
decreased largely near the southern
limits of the current distribution
range, i.e. off Taiwan and the Ryukyu
and Diaoyutai Islands, but increased
near the northern range limits, i.e.

North and South Korea and Japan (main islands;
Table 2). The catch potential off mainland China
decreased slightly. Areas with the highest absolute
increase in catch potential were Japan (main islands)
and North Korea.
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Table 2. Predicted distribution of relative catch potential by areas of Exclusive 
Economic Zones

Exclusive Economic Predicted relative Relative change 
Zone by area catch potential (%) in catch 

Current (2000s) Climate-shifted potential (%)

Japan (main islands) 0.3 7.6 2433.3
North Korea 0.8 4.5 462.5
South Korea 26.5 33.3 25.7
China (mainland) 51.6 44.4 –14.0
Ryukyu & Diaoyutai 14.1 8.4 –40.4
Islands (Japan)
Taiwan 6.8 1.8 –73.5
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DISCUSSION

This study demonstrates that maximum catch poten-
tial for marine fishes or invertebrates can be reason-
ably predicted at a global scale. The empirical relation-
ship between catch potential and biogeographic and

ecological attributes was developed from a wide range
of taxonomic groups (from krill to tuna) and species
with very different life history and ecology (small to
large-bodied, herbivores to top predators). Given the
high uncertainty of the original data (catch, geogra-
phic range, and trophic levels), the explanatory power

194

Fig. 5. Larimichthys polyactis (Sciaenidae). (a) Current (early 2000s) and (b) climate-shifted distributions of the small yellow
croaker. The current distribution was generated from the method described by Close et al. (2006). The climate-shifted distribu-
tion was predicted by a dynamic bioclimate envelope model described by Cheung et al. (2008), under a hypothetical increase in 

average global ocean temperature of 2.5°C. Boundaries of Exclusive Economic Zones are delineated by the dashed lines
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of the statistical model was unexpectedly high. More-
over, the empirical model was supported by and
agreed with a theoretical model developed from well-
established hypotheses concerning trophic energetics
(e.g. Ware 2000) and allometric scaling of metabolism
(e.g. Brown et al. 2004).

An important application of the empirical relationship
developed in this study is to predict the impacts of cli-
mate change on the catch potential of world fisheries. If
ocean temperature and ocean circulation continue to
change in the future as anticipated (IPCC 2007), species’
geographic ranges and the mean primary production
available for the species are likely to change (Roessig et
al. 2004, Sarmiento et al. 2004, Hobday et al. 2006). Em-
pirical evidence shows that geographic ranges of marine
species have shifted toward cooler waters as ocean tem-
perature increased (e.g. Perry et al. 2005). The empirical
model developed here, which includes both primary pro-
ductivity and species’ geographic range as independent
variables, can be used to quantitatively predict the
effects of such changes on the catch potential of fish and
invertebrate species. This can be largely facilitated by
the use of global dynamic bioclimate envelope models to
predict the changes in relative distribution and geo-
graphic range of marine fishes and invertebrates under
scenarios of future changes in ocean conditions (e.g.
temperature, currents) obtained from climate models
(Cheung et al. 2008). Such application of the empirical
model was illustrated here with the case of the small
yellow croaker. Thus, combining the empirical model
with the dynamic bioclimate envelope model provides a
powerful tool to assess climate change impacts on catch,
and thus the socio-economics of marine fisheries globally
and in different parts of the world. This can potentially
improve the estimations of the global cost of climate
change (Stern 2006).

The high variance between the observed average
maximum annual catch and the model predictions is
partly a result of the approximation involved in repre-
senting trophic dynamics. Although the explanatory
power of the model is reasonably high, the uncertainty
associated with the predicted maximum annual catch
covers about 1 order of magnitude. This can be partly
explained by the difficulties in predicting the differen-
tial utilization of energy between species within a tro-
phic level, i.e. the variable γ in Eq. (15) (Jennings et al.
2007). In this analysis, a mean trophic level across life
history stages was assumed for each species. However,
trophic levels change during ontogeny (Pauly et al.
2001), and thus a single value of trophic level may not
capture the full range of trophic levels that an organ-
ism can occupy in an ecosystem (Jennings et al. 2002,
Jennings & Mackinson 2003). This can confound the
analysis of allometric scaling of trophic dynamics (Jen-
nings & Mackinson 2003, Maxwell & Jennings 2006).

Empirical studies of allometric relationships in macro-
ecology (e.g. abundance-body size relationship) have
reported inconsistent values of scaling exponents (e.g.
Blackburn & Gaston 1997, Belgrano et al. 2002). Alter-
native values of the scaling exponent may exist in
some taxa (e.g. Clark & Johnston 1999, Glazier 2005,
van der Meer 2006, White et al. 2007) or life stages
(Pauly 1981). Since our empirical model was derived
from such allometric relationships, the uncertainty in
scaling exponents may have contributed to the vari-
ance of our model. In contrast, if the scaling exponent
in Eq. (1) deviates from 0.75, i.e. the value that we em-
ployed in our analysis, log-transformed body size (W )
will have an effect on the maximum catch potential of
a species (Eq. 12). Since log(W ) is closely correlated
with trophic level, deviation from our assumed value
for the scaling exponent would have been partly
accounted for by the coefficient of the trophic level
term in the empirical model. Thus, the uncertainty in
the value of the scaling exponent should not affect the
validity of our empirical model. In addition, previous
studies suggested the use of individual body size-
based analysis that may potentially improve the repre-
sentation of trophic dynamics and analysis of allomet-
ric relationships (e.g. Jennings et al. 2007). However,
at the scale of this study (global), data for such size-
based analysis were not available. Thus, we used the
best available species-based data to identify a suitable
empirical relationship.

Other sources of uncertainty in the model include
the approximations involved in estimating the maxi-
mum catch potential and geographic range of species.
Maximum catch potential was approximated by the
average maximum recorded catch in the catch time-
series. The catch time-series data originated from fish-
eries statistics compiled by the FAO, which may not
represent the total extractions from the sea. FAO fish-
eries statistics rely largely on countries’ voluntary re-
ports of their annual fisheries catches, which may not
be accurate (see Watson & Pauly 2001, Zeller et al.
2007). Catches that were not landed (discards), low-
value bycatch, and catches from illegal, unregulated,
or unreported (IUU) fisheries were poorly recorded
(Pauly et al. 2002). Moreover, observed maximum
catch is affected by changes in fishing effort (Hilborn &
Walters 1992). The latter depends largely on changes
in fisheries regulations, market prices of catch, cost of
fishing, and subsidies. Conversely, the low sensitivity
of the model parameters to alternative estimates of
maximum catch potential suggests that the use of the
average maximum recorded catch of a species is a
rough, but robust, approximation of the maximum
catch potential.

Another source of uncertainty is the predicted geo-
graphic range. In this study, the coarse resolution of
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the spatial database and the large number of species
limited us to use predicted area of occurrence (Close et
al. 2006) as a proxy to calculate geographic range.
However, as occurrence area may include areas that
the species does not inhabit, area of occupancy identi-
fied from spatial data at a fine scale, i.e. the area where
a species actually occurs, is a better measure to repre-
sent the geographic range and habitat usage of a spe-
cies (Gaston & Blackburn 2000). If finer-scale data are
available, allometric relationships can be developed to
extrapolate area of occupancy at a fine spatial scale
(Kunin 1998, Kunin et al. 2000). In this analysis, we
attempted to correct for the bias resulting from the dif-
ference in allometric relationships between species
with different spatial distribution patterns. However,
the underlying allometric relationships for each spe-
cies remained unknown. In the future, finer scale occu-
pancy data will be collated and combined with the
coarser scale occurrence data to investigate how the
‘scale-area’ allometric relationship can be used to im-
prove the predictions of maximum catch potential.

The variance of the empirical model may have small
effects on the prediction of changes in catch potential
under scenarios of climate change. Errors resulting from
the inconsistency in allometric scaling exponents and
from the methods used for estimating maximum catch
potential and geographic range should remain similar
when ocean conditions change. Thus, predictions of rel-
ative change in maximum catch potential of species,
given scenarios of future primary production and geo-
graphic range, should be robust to such model un-
certainties. Alternatively, as species composition and
trophic ecology in an area changes, the partitioning of
energy between species within a trophic level (repre-
sented by the term γ in Eq. 15) may also change. Such
changes are not currently captured by our model. Im-
proved understanding of the mechanism that determines
energy partitioning between species within a trophic
level may improve the representation of such effects
in the regression model. Also, use of trophodynamic
ecosystem models such as Ecopath with Ecosim (Pauly
et al. 2000, Christensen & Walters 2004) can provide
additional information to evaluate large-scale effects
of climate change on the marine ecosystem.

In conclusion, the empirical model developed in this
study is the first attempt to derive a model suitable for
estimating marine catch potential by species at a glo-
bal scale. The model is representative of a wide range
of marine fishes and invertebrates and has a surpris-
ingly high explanatory power. Although inherent un-
certainty in the original data and model parameters
result in high variance in the predicted maximum
catch potential, predicted relative changes in catch
potential under climate change-induced changes in
biogeography should be robust to handle the uncer-

tainties. In the future we will combine this empirical
model with a bioclimate envelope model for marine
fishes and invertebrates to predict the socio-economic
impacts of climate change on marine fisheries.
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